Abstract
Low-cost and high-safety aqueous sodium-ion batteries have received widespread attention in the field of large-scale energy storage, but the narrow electrochemical stability window (1.23 V) of water limits the energy density of aqueous sodium-ion batteries. The “water-in-salt” strategy which uses the interaction between cations and water molecules in the solution can inhibit water decomposition and broaden the electrochemical stability window of water. In this work, two types of low-cost salts, namely, ammonium acetate (NH4CH3COOH) and sodium acetate (NaCH3COOH), were used to configure a mixed aqueous electrolyte for aqueous sodium-ion batteries. The solution consisted of 25 mol·L -1 NH4CH3COOH and 5 mol·L-1 NaCH3COOH, used as an aqueous electrolyte, exhibited a wide electrochemical stability window of 3.9 V and high ionic conductivity of 28.2 mS·cm-1. The composite of layered manganese dioxide and multi-wall carbon nanotubes (MnO2/CNTs) was used as a positive electrode material, while the carbon-coated NaTi2(PO4)3 with NASICON structure was used as a negative electrode material. Both of these electrode materials had excellent electrochemical performances in the aqueous electrolyte. A full cell achieved an average working voltage of about 1.3 V and a discharge capacity of 74.1 mAh·g-1 at a current density of 0.1 A·g-1. This aqueous sodium-ion battery displayed excellent cycling stability with negligible capacity losses (0.062% per cycle) for 500 cycles. The safe and environmentally friendly aqueous acetate electrolyte, with a wide electrochemical stability window, showed the potential to be matched with positive materials having higher potential and negative materials having lower potential for further improving the voltage of aqueous sodium-ion batteries and promoting the development of aqueous batteries for large-scale energy storage technology.
Graphical Abstract
Keywords
sodium ion battery, aqueous electrolyte, ammonium acetate, water-in-salt
Publication Date
2022-01-28
Online Available Date
2021-03-27
Revised Date
2021-03-10
Received Date
2021-02-22
Recommended Citation
Dao-Yun Lan, Xiao-Feng Qu, Yu-Ting Tang, Li-Ying Liu, Jun Liu.
Acetate Solutions with 3.9 V Electrochemical Stability Window as an Electrolyte for Low-Cost and High-Performance Aqueous Sodium-Ion Batteries[J]. Journal of Electrochemistry,
2022
,
28(1): 2102231.
DOI: 10.13208/j.electrochem.210223
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss1/6
References
[1] Liu S(刘双), Shao L Y(邵涟漪), Zhang X J(张雪静), Tao Z L(陶占良), Chen J(陈军). Advances in electrode materials for aqueous rechargeable sodium-ion batteries[J]. Acta Phys. - Chim. Sin.(物理化学学报), 2018, 34(6): 581-97.
[2]
Ge X F, Liu S H, Qiao M, Du Y C, Li Y F, Bao J C, Zhou X S. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers[J]. Angew. Chem. Int. Ed., 2019, 58(41): 14578-14583.
doi: 10.1002/anie.v58.41
URL
[3]
Kudakwashe C, Grietus M, Dmitri L D, Notten P H L. Sodium-ion battery materials and electrochemical properties reviewed[J]. Adv. Energy Mater., 2018, 8(16): 1800079.
doi: 10.1002/aenm.v8.16
URL
[4]
Yi Z Y, Xu J Y, Xu Z H, Zhang M, He Y N, Bao J C, Zhou X S. Ultrafine SnSSe/multilayer graphene nanosheet nanocomposite as a high-performance anode material for potassium-ion half/full batteries[J]. J. Energy Chem., 2021, 60: 241-248.
doi: 10.1016/j.jechem.2021.01.022
URL
[5] Cao Y(曹翊), Wang Y G(王永刚), Wang Q(王青), Zhang Z Y(张兆勇), Che Y(车勇), Xia Y Y(夏永姚), Dai X(戴翔). Development of aqueous sodium ion battery[J]. Energy Storage Sci. Technol.(储能科学与技术), 2016, 5(3): 317-323.
[6]
Zhang Z Z, Du Y C, Wang Q C, Xu J Y, Zhou Y N, Bao J C, Shen J, Zhou X S. A yolk-shell-structured FePO4 cathode for high-rate and long-cycling sodium-ion batteries[J]. Angew. Chem. Int. Ed., 2020, 59(40): 17504-17510.
doi: 10.1002/anie.v59.40
URL
[7]
Grey C P, Tarascon J M. Sustainability and in situ monitoring in battery development[J]. Nat. Mater., 2016, 16(1): 45-56.
doi: 10.1038/nmat4777
pmid: 27994251
[8]
Wang Y G, Yi J, Xia Y Y. Recent progress in aqueous lithium-ion batteries[J]. Adv. Energy Mater., 2012, 2(7): 830-840.
doi: 10.1002/aenm.201200065
URL
[9]
Bin D, Wang F, Tamirat A G, Suo L M, Wang Y G, Wang C S, Xia Y Y. Progress in aqueous rechargeable sodium-ion batteries[J]. Adv. Energy Mater., 2018, 8(17): 1703008.
doi: 10.1002/aenm.v8.17
URL
[10]
Peljo P, Girault H H. Electrochemical potential window of battery electrolytes: the HOMO-LUMO misconception[J]. Energy Environ. Sci., 2018, 11(9): 2306-2309.
doi: 10.1039/C8EE01286E
URL
[11]
Ovshinsky S R, Fetcenko M A, Ross J. A nickel metal hydride battery for electric vehicles[J]. Science, 1993, 260(5105): 176-181.
pmid: 17807176
[12]
Suo L M, Borodin O, Gao T, Olguin M, Ho J, Fan X L, Luo C, Wang C S, Xu K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938-943
doi: 10.1126/science.aab1595
URL
[13]
Suo L M, Borodin O, Wang Y S, Rong X H, Sun W, Fan X L, Xu S Y, Schroeder M A, Cresce A V, Wang F, Yang C Y, Hu Y S, Xu K, Wang C S. “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting[J]. Adv. Energy Mater., 2017, 7(21): 1701189.
doi: 10.1002/aenm.v7.21
URL
[14]
Leonard D P, Wei Z X, Chen G, Du F, Ji X. Water-in-salt electrolyte for potassium-ion batteries[J]. ACS Energy Lett., 2018, 3(2): 373-374.
doi: 10.1021/acsenergylett.8b00009
[15]
Mende-M T, Li Z J, Salanne M. Computational screening of the physical properties of water-in-salt electrolytes[J]. Batteries Supercaps, 2021, 4(4): 646-652.
doi: 10.1002/batt.v4.4
URL
[16]
Lukatskaya M R, Feldblyum J I, Mackanic D G, Lissel F, Michels D L, Cui Y, Bao Z A. Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries[J]. Energy Environ. Sci., 2018, 11(10): 2876-2883.
doi: 10.1039/C8EE00833G
URL
[17]
Han J, Zhang H, Varzi A, Passerini S. Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries[J]. ChemSusChem, 2018, 11(21): 3704-3707.
doi: 10.1002/cssc.v11.21
URL
[18]
Liu Z X, Pang G, Dong S Y, Zhang Y D, Mi C H, Zhang X G. An aqueous rechargeable sodium-magnesium mixed ion battery based on NaTi2(PO4)3-MnO2 system[J]. Electrochim. Acta, 2019, 311: 1-7.
doi: 10.1016/j.electacta.2019.04.130
URL
[19] Cai R(蔡然), Yang H W(杨宏伟), He J S(和劲松), Zhu W P(祝万鹏). Research progress on hydrogen bond structure in liquide water via raman spectroscopy[J]. Environ. Protec. Chem. Ind.(化工环保), 2010, 30(6): 492-495.
[20]
Ogata A, Komaba S, Baddour-Hadjean R, Pereira-Ramos J P, Kumagai N. Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery[J]. Electrochim. Acta, 2008, 53(7): 3084-3093.
doi: 10.1016/j.electacta.2007.11.038
URL
[21] Zhang Y, Hu Y, Li S, et al. Manganese dioxide-coated carbon nanotubes as an improved cathodic catalyst for oxygen reduction in a microbial fuel cell[J]. J. Power So-urces, 2011, 196(22): 9284-9289.
[22]
Xie J, Liang Z, Lu Y C. Molecular crowding electrolytes for high-voltage aqueous batteries[J]. Nat. Mater., 2020, 19(9): 1006-1011.
doi: 10.1038/s41563-020-0667-y
URL
[23]
Tongraar A, Liedl K R, Rode B M. Born-oppenheimer ab Initio QM/MM dynamics simulations of Na+ and K+ in water: From structure making to structure breaking effects[J]. J. Phys. Chem. A, 1998, 102(50): 10340-10347.
doi: 10.1021/jp982270y
URL
[24]
Burikov S A, Dolenko T A, Velikotnyi P A, Sugonyaev A V, Fadeev V V. The effect of hydration of ions of inorganic salts on the shape of the Raman stretching band of water[J]. Opt. Spectrosc., 2005, 98(2): 235-239.
doi: 10.1134/1.1870066
URL
[25]
Reber D, Figi R, Kühnel R S, Battaglia C. Stability of aqueous electrolytes based on LiFSI and NaFSI[J]. Electrochim. Acta, 2019, 321: 134644.
doi: 10.1016/j.electacta.2019.134644
URL
[26]
Zhang W Y, Jin H X, Du Y Q, Zhang Y J, Wang Z H, Zhang J X. Hierarchical lamellar-structured MnO2@grap-hene for high performance Li, Na and K ion batteries[J]. ChemistrySelect, 2020, 5(40): 12481-61248.
doi: 10.1002/slct.v5.40
URL
[27]
Niu L Y, Yan L J, Lu Z W, Gong Y Y, Chen T Q, Li C, Liu X J, Xu S Q. Tuning electronic structure of δ-MnO2 by the alkali-ion (K, Na, Li) associated manganese vacancies for high-rate supercapacitors[J]. J. Energy Chem., 2021, 56: 245-258.
doi: 10.1016/j.jechem.2020.08.004
URL
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons