Abstract
Hydrogen is a clean, efficient, renewable energy resource and the most promising alternative to fossil fuels for future carbon-neutral energy supply. Therefore, sustainable hydrogen production is highly attractive and urgently demanded, especially via water electrolysis that has clean, abundant precursors and zero emission. However, current water electrolysis is hindered by the sluggish kinetics and low cost/energy efficiency of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this regard, electrochemical synthesis offers prospects to raise the efficiency and benefit of water electrolysis by fabricating advanced electrocatalysts and providing more efficient/value-adding co-electrolysis alternatives. It is an eco-friendly and facile fabrication method for materials ranging from molecular to nano scales via electrolysis or other electrochemical operations. In this review, we firstly introduce the basic concepts, design protocols, and typical methods of electrochemical synthesis. Then, we summarize the applications and advances of electrochemical synthesis in the field of electrocatalytic water splitting. We focus on the synthesis of nanostructured electrocatalysts towards more efficient HER, as well as electrochemical oxidation of small molecules to replace OER for more efficient and/or value-adding co-electrolysis with HER. We systematically discuss the relationship between electrochemical synthetic conditions and the product morphology, selectivity to enlighten future explorations. Finally, challenges and perspectives for electrochemical synthesis towards advanced water electrolysis, as well as other energy conversion and storage applications are featured.
Graphical Abstract
Keywords
electrochemical synthesis, water electrolysis, electrocatalyst, co-electrolysis, organic electrosynthesis, hydrogen evolution reaction
Publication Date
2022-10-28
Online Available Date
2022-08-31
Revised Date
2022-07-31
Received Date
2022-07-14
Recommended Citation
Jia-Qi Wei, Xiao-Dong Chen, Shu-Zhou Li.
Electrochemical Syntheses of Nanomaterials and Small Molecules for Electrolytic Hydrogen Production[J]. Journal of Electrochemistry,
2022
,
28(10): 2214012.
DOI: 10.13208/j.electrochem.2214012
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss10/2
References
[1] Zhu J, Hu L S, Zhao P X, Lee L Y S, Wong K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem. Rev., 2020, 120(2): 851-918.
doi: 10.1021/acs.chemrev.9b00248 pmid: 31657904
[2] Vesborg P C K, Seger B, Chorkendorff I B. Recent development in hydrogen evolution reaction catalysts and their practical implementation[J]. J. Phys. Chem. Lett., 2015, 6(6): 951-957.
doi: 10.1021/acs.jpclett.5b00306 pmid: 26262851
[3] Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I B, Nörskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998.
doi: 10.1126/science.aad4998 URL
[4] Zou X X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chem. Soc. Rev., 2015, 44(15): 5148-5180.
doi: 10.1039/c4cs00448e pmid: 25886650
[5] Dubouis N, Grimaud A. The hydrogen evolution reaction: From material to interfacial descriptors[J]. Chem. Sci., 2019, 10(40): 9165-9181.
doi: 10.1039/c9sc03831k pmid: 32015799
[6] Zheng Y, Jiao Y, Jaroniec M, Qiao S Z. Advancing the eletcrochemistry of the hydrogen-evolution reaction through combining experiment and theory[J]. Angew. Chem. Int. Ed., 2015, 54(1): 52-65.
doi: 10.1002/anie.201407031 pmid: 25384712
[7] Li Y, Luo Z Y, Ge J J, Liu C P, X W. Research progress in hydrogen evolution low noble/non-precious metal catalysts of water electrolysis[J]. J. Electrochem., 2018, 24(6): 572-588.
doi: 10.13208/j.electrochem.180855
[8] Leech M C, Lam K. A practical guide to electrosynthesis[J]. Nat. Rev. Chem., 2022, 6(4): 275-286.
doi: 10.1038/s41570-022-00372-y URL
[9] Li G R, Xu H, Lu X F, Feng J X, Tong Y X, Su C Y. Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage[J]. Nanoscale, 2013, 5(10): 4056-4069.
doi: 10.1039/c3nr00607g URL
[10] Liu R, Duay J, Lee S B. Electrochemical formation mechanism for the controlled synthesis of heterogeneous MnO2/poly(3,4-ethylenedioxythiophene) nanowires[J]. ACS Nano, 2011, 5(7): 5608-5619.
doi: 10.1021/nn201106j pmid: 21661749
[11] Petrii O A. Electrosynthesis of nanostructures and nano-materials[J]. Russ. Chem. Rev., 2015, 84(2): 159-193.
doi: 10.1070/RCR4438 URL
[12] Therese G H A, Kamath P V. Electrochemical synthesis of metal oxides and hydroxides[J]. Chem. Mater., 2000, 12(5): 1195-1204.
doi: 10.1021/cm990447a URL
[13] Xu Y, Zhang B. Recent advances in electrochemical hydrogen production from water assisted by alternative oxidation reactions[J]. ChemElectroChem, 2019, 6(13): 3214-3226.
doi: 10.1002/celc.201900675 URL
[14] Liu K W, Zhang C L, Sun Y D, Zhang G H, Shen X C, Zou F, Zhang H C, Wu Z W, Wegener E C, Taubert C J, Miller J T, Peng Z M, Zhu Y. High-performance transition metal phosphide alloy catalyst for oxygen evolution reaction[J]. ACS Nano, 2018, 12(1): 158-167.
doi: 10.1021/acsnano.7b04646 pmid: 29211437
[15] Li Y, Wei X F, Chen L S, Shi J L. Electrocatalytic hydrogen production trilogy[J]. Angew. Chem. Int. Ed., 2021, 60(36): 19550-19571.
doi: 10.1002/anie.202009854 URL
[16] You B, Han G Q, Sun Y J. Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation[J]. Chem. Commun., 2018, 54(47): 5943-5955.
doi: 10.1039/C8CC01830H URL
[17] Yan M, Kawamata Y, Baran P S. Synthetic organic electrochemical methods since 2000: On the verge of a renaissance[J]. Chem. Rev., 2017, 117(21): 13230-13319.
doi: 10.1021/acs.chemrev.7b00397 pmid: 28991454
[18] Chen L S, Shi J L. Co-electrolysis toward value-added chemicals[J]. Sci. China Mater., 2022, 65(1): 1-9.
doi: 10.1007/s40843-021-1809-5 URL
[19] Garlyyev B, Xue S, Fichtner J, Bandarenka A S, Andronescu C. Prospects of value-added chemicals and hydrogen via electrolysis[J]. ChemSusChem, 2020, 13(10): 2513-2521.
doi: 10.1002/cssc.202000339 pmid: 32059064
[20] Pletcher D, Walsh F C. Industrial electrochemistry[M]. America: Springer Dordrecht, 1993.
[21] Heard D M, Lennox A J J. Electrode materials in modern organic electrochemistry[J]. Angew. Chem. Int. Ed., 2020, 59(43): 18866-18884.
doi: 10.1002/anie.202005745 URL
[22] Izutsu K. Electrochemistry in nonaqueous solutions[M]. America: John Wiley & Sons, Inc., 2002.
[23] Campos-Martin J M, Blanco-Brieva G, Fierro J L G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process[J]. Angew. Chem. Int. Ed., 2006, 45(42): 6962-6984.
doi: 10.1002/anie.200503779 URL
[24] Yount J, Piercey D G. Electrochemical synthesis of high-nitrogen materials and energetic materials[J]. Chem. Rev., 2022, 122(9): 8809-8840.
doi: 10.1021/acs.chemrev.1c00935 URL
[25] Jovic V D, Jovic B M, Pavlovic M G. Electrodeposition of Ni, Co and Ni-Co alloy powders[J]. Electrochim. Acta, 2006, 51(25): 5468-5477.
doi: 10.1016/j.electacta.2006.02.022 URL
[26] Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. J. Phys. Chem. C, 2007, 111(40): 14925-14931.
doi: 10.1021/jp074464w URL
[27] Mai L Q, Minhas-Khan A, Tian X C, Hercule K M, Zhao Y L, Lin X, Xu X. Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance[J]. Nat. Commun., 2013, 4: 2923.
doi: 10.1038/ncomms3923 pmid: 24327172
[28] Ahn S H, Hwang S J, Yoo S J, Choi I, Kim H J, Jang J H, Nam S W, Lim T H, Lim T, Kim S K, Kim J J. Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis[J]. J. Mater. Chem., 2012, 22(30): 15153-15159.
doi: 10.1039/c2jm31439h URL
[29] Gurrappa I, Binder L. Electrodeposition of nanostructured coatings and their characterization—a review[J]. Sci. Technol. Adv. Mater., 2008, 9(4): 043001.
doi: 10.1088/1468-6996/9/4/043001 URL
[30] Lahiri A, Endres F. Review—electrodeposition of nanostructured materials from aqueous, organic and ionic liquid electrolytes for Li-ion and Na-ion batteries: A comparative review[J]. J. Electrochem. Soc., 2017, 164(9): D597-D612.
doi: 10.1149/2.1011709jes URL
[31] Walsh F C, de Leon C P. A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology[J]. Trans. Inst. Met., 2014, 92(2): 83-98.
[32] Zheng J X, Kim M S, Tu Z Y, Choudhury S, Tang T, Archer L A. Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries[J]. Chem. Soc. Rev., 2020, 49(9): 2701-2750.
doi: 10.1039/c9cs00883g pmid: 32232259
[33] Wu W M, Zhang C S, Hou S G. Electrochemical exfoliation of graphene and graphene-analogous 2D nanosheets[J]. J. Mater. Sci., 2017, 52(18): 10649-10660.
doi: 10.1007/s10853-017-1289-x URL
[34] Ambrosi A, Pumera M. Exfoliation of layered materials using electrochemistry[J]. Chem. Soc. Rev., 2018, 47(19): 7213-7224.
doi: 10.1039/c7cs00811b pmid: 30132475
[35] Yang Y C, Hou H S, Zou G Q, Shi W, Shuai H L, Li J Y, Ji X B. Electrochemical exfoliation of graphene-like two-dimensional nanomaterials[J]. Nanoscale, 2019, 11(1): 16-33.
doi: 10.1039/C8NR08227H URL
[36] Zhang Q Y, Mei L, Cao X H, Tang Y X, Zeng Z Y. Intercalation and exfoliation chemistries of transition metal dichalcogenides[J]. J. Mater. Chem. A, 2020, 8(31): 15417-15444.
doi: 10.1039/D0TA03727C URL
[37] Yang S, Zhang P P, Nia A S, Feng X L. Emerging 2D materials produced via electrochemistry[J]. Adv. Mater., 2020, 32(10): 1907857.
doi: 10.1002/adma.201907857 URL
[38] Liu F M, Zhang L, Wang L, Cheng F Y. The electrochemical tuning of transition metal-based materials for electrocatalysis[J]. Electrochem. Energy Rev., 2021, 4(1): 146-168.
doi: 10.1007/s41918-020-00089-w URL
[39] Baumgärtner M E, Raub C J. The electrodeposition of platinum and platinum alloys[J]. Platin. Met. Rev., 1988, 32(4): 188-197.
[40] Ring L, Pollet B G, Chatenet M, Abbou S, Küpper K, Schmidt M, Huck M, Gries A, Steinhart M, Schäfer H. From bad electrochemical practices to an environmental and waste reducing approach for the generation of active hydrogen evolving electrodes[J]. Angew. Chem. Int. Ed., 2019, 58(48): 17383-17392.
doi: 10.1002/anie.201908649 pmid: 31539189
[41] Yang F Z, Xu S K, Yao S B, Chen B Y, Zheng X Q, Zhong X H, Zhou S M. A study on the electrodeposition of palladium and it’s nucleation[J]. J. Electrochem., 1997, (1): 103-108.
[42] Edison T N J I, Atchudan R, Karthik N, Chandrasekaran S, Perumal S, Raja P B, Perumal V, Lee Y R. Deep eutectic solvent assisted electrosynthesis of ruthenium nanoparticles on stainless steel mesh for electrocatalytic hydrogen evolution reaction[J]. Fuel, 2021, 297: 120786.
doi: 10.1016/j.fuel.2021.120786 URL
[43] Wang S J, Zou X L, Lu Y, Rao S C, Xie X L, Pang Z Y, Lu X G, Xu Q, Zhou Z F. Electrodeposition of nano-nickel in deep eutectic solvents for hydrogen evolution reaction in alkaline solution[J]. Int. J. Hydrog. Energy, 2018, 43(33): 15673-15686.
doi: 10.1016/j.ijhydene.2018.06.188 URL
[44] Smith E L, Abbott A P, Ryder K S. Deep eutectic solvents (DESs) and their applications[J]. Chem. Rev., 2014, 114(21): 11060-11082.
doi: 10.1021/cr300162p pmid: 25300631
[45] Zhou M, Dick J E, Bard A J. Electrodeposition of isolated platinum atoms and clusters on bismuth-characterization and electrocatalysis[J]. J. Am. Chem. Soc., 2017, 139(48): 17677-17682.
doi: 10.1021/jacs.7b10646 pmid: 29131602
[46] Zhou M, Bao S J, Bard A J. Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles[J]. J. Am. Chem. Soc., 2019, 141(18): 7327-7332.
doi: 10.1021/jacs.8b13366 pmid: 31017772
[47] Stanca S E, Vogt O, Zieger G, Ihring A, Dellith J, Undisz A, Rettenmayr M, Schmidt H. Electrochemical growth mechanism of nanoporous platinum layers[J]. Commun. Chem., 2021, 4(1): 98.
doi: 10.1038/s42004-021-00535-w URL
[48] Dehcheshmeh M S, Kiani A. Synthesis of Pt nano catalyst in the presence of carbon monoxide: superior activity towards hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2019, 44(43): 23969-23974.
doi: 10.1016/j.ijhydene.2019.07.116 URL
[49] Cheng H E, Li W L, Yang Z P. Enhancement of hydrogen evolution reaction by Pt nanopillar-array electrode in alkaline media and the effect of nanopillar length on the electrode efficiency[J]. Int. J. Hydrog. Energy, 2019, 44(57): 30141-30150.
doi: 10.1016/j.ijhydene.2019.09.188 URL
[50] Brimaud S, Behm R J. Electrodeposition of a Pt monolayer film: Using kinetic limitations for atomic layer epitaxy[J]. J. Am. Chem. Soc., 2013, 135(32): 11716-11719.
doi: 10.1021/ja4051795 pmid: 23909793
[51] Chen X X, Li N, Eckhard K, Stoica L, Xia W, Assmann J, Muhler M, Schuhmann W. Pulsed electrodeposition of Pt nanoclusters on carbon nanotubes modified carbon materials using diffusion restricting viscous electrolytes[J]. Electrochem. Commun., 2007, 9(6): 1348-1354.
doi: 10.1016/j.elecom.2007.01.034 URL
[52] Hussein H E M, Maurer R J, Amari H, Peters J J P, Meng L C, Beanland R, Newton M E, Macpherson J V. Tracking metal electrodeposition dynamics from nucleation and growth of a single atom to a crystalline nanoparticle[J]. ACS Nano, 2018, 12(7): 7388-7396.
doi: 10.1021/acsnano.8b04089 pmid: 29969230
[53] Huang K, Shin K, Henkelman G, Crooks R M. Correlating surface structures and electrochemical activity using shape-controlled single-Pt nanoparticles[J]. ACS Nano, 2021, 15(11): 17926-17937.
doi: 10.1021/acsnano.1c06281 URL
[54] Glasscott M W, Dick J E. Fine-tuning porosity and time-resolved observation of the nucleation and growth of single platinum nanoparticles[J]. ACS Nano, 2019, 13(4): 4572-4581.
doi: 10.1021/acsnano.9b00546 pmid: 30790511
[55] Ye F, Li J J, Wang T T, Liu Y, Wei H J, Li J L, Wang X D. Electrocatalytic properties of platinum catalysts prepared by pulse electrodeposition method using SnO2 as an assisting reagent[J]. J. Phys. Chem. C, 2008, 112(33): 12894-12898.
doi: 10.1021/jp803188s URL
[56] Ohyama J, Sato T, Yamamoto Y, Arai S, Satsuma A. Size specifically high activity of Ru nanoparticles for hydrogen oxidation reaction in alkaline electrolyte[J]. J. Am. Chem. Soc., 2013, 135(21): 8016-8021.
doi: 10.1021/ja4021638 pmid: 23611161
[57] He Y P, Sheng Q L, Zheng J B. Double-template electrosynthesis of platinum nanomaterials for sensing application[J]. Sens. Actuators B Chem., 2012, 166: 89-96.
[58] Li Y J, Zhang H C, Xu T H, Lu Z Y, Wu X C, Wan P B, Sun X M, Jiang L. Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution[J]. Adv. Funct. Mater., 2015, 25(11): 1737-1744.
doi: 10.1002/adfm.201404250 URL
[59] Tavakkoli M, Holmberg N, Kronberg R, Jiang H, Sainio J, Kauppinen E I, Kallio T, Laasonen K. Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction[J]. ACS Catal., 2017, 7(5): 3121-3130.
doi: 10.1021/acscatal.7b00199 URL
[60] Dudin P V, Snowden M E, Macpherson J V, Unwin P R. Electrochemistry at nanoscale electrodes: Individual single-walled carbon nanotubes (SWNTs) and SWNT-templated metal nanowires[J]. ACS Nano, 2011, 5(12): 10017-10025.
doi: 10.1021/nn203823f pmid: 22092149[
61] Ye S H, Luo F Y, Zhang Q L, Zhang P Y, Xu T T, Wang Q, He D S, Guo L C, Zhang Y, He C X, Ouyang X P, Gu M, Liu J H, Sun X L. Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction[J]. Energy Environ. Sci., 2019, 12(3): 1000-1007.
doi: 10.1039/C8EE02888E URL
[62] Xu G R, Hui J J, Huang T, Chen Y, Lee J M. Platinum nanocuboids supported on reduced graphene oxide as efficient electrocatalyst for the hydrogen evolution reaction[J]. J. Power Sources, 2015, 285: 393-399.
doi: 10.1016/j.jpowsour.2015.03.131 URL
[63] Zhang H B, An P F, Zhou W, Guan B Y, Zhang P, Dong J C, Lou X W D. Dynamic traction of latticeconfined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction[J]. Sci. Adv., 2018, 4(1): eaao-6657.[64] Wang Y H, Chen L, Yu X M, Wang Y G, Zheng G F. Superb alkaline hydrogen evolution and simultaneous electricity generation by Pt-decorated Ni3N nanosheets[J]. Adv. Energy Mater., 2017, 7(2): 1601390.
doi: 10.1002/aenm.201601390 URL
[65] Bose C S C, Rajeshwar K. Efficient electrocatalyst assemblies for proton and oxygen reduction: The electrosynthesis and characterization of polypyrrole films containing nanodispersed platinum particles[J]. J. Electroanal. Chem., 1992, 333(1-2): 235-256.
doi: 10.1016/0022-0728(92)80394-J URL
[66] Zhou C F, Liu Z W, Yan Y S, Du X S, Mai Y W, Ringer S. Electro-synthesis of novel nanostructured pedot films and their application as catalyst support[J]. Nanoscale Res. Lett., 2011, 6: 364.
doi: 10.1186/1556-276X-6-364 pmid: 21711871
[67] Nieminen J J, Hatay I, Ge P Y, Méndez M A, Murtomäki L, Girault H H. Hydrogen evolution catalyzed by electrodeposited nanoparticles at the liquid/liquid interface[J]. Chem. Commun., 2011, 47(19): 5548-5550.
doi: 10.1039/C1CC10637F URL
[68] Aslan E, Patir I H, Ersoz M. Cu nanoparticles electrodeposited at liquid-liquid interfaces: A highly efficient catalyst for the hydrogen evolution reaction[J]. Chem. Eur. J., 2015, 21(12): 4585-4589.
doi: 10.1002/chem.201406615 URL
[69] Xiao H, Zhang J J, Zhao M, Ma J C, Li Y, Hu T J, Zheng Z F, Jia J F, Wu H S. Electric field-assisted synthesis of Pt, carbon quantum dots-coloaded graphene hybrid for hydrogen evolution reaction[J]. J. Power Sources, 2020, 451: 227770.
doi: 10.1016/j.jpowsour.2020.227770 URL
[70] Xiao H, Xue S F, Zhang J J, Zhao M, Ma J C, Chen S, Zheng Z F, Jia J F, Wu H S. Facile electrolytic synthesis of Pt and carbon quantum dots coloaded multiwall carbon nanotube as highly efficient electrocatalyst for hydrogen evolution and ethanol oxidation[J]. Chem. Eng. J., 2021, 408: 127271.
doi: 10.1016/j.cej.2020.127271 URL
[71] Liu L, Wang Y, Zhao Y Z, Wang Y, Zhang Z L, Wu T, Qin W J, Liu S J, Jia B R, Wu H Y, Zhang D Y, Qu X H, Chhowalla M, Qin M L. Ultrahigh Pt-mass-activity hydrogen evolution catalyst electrodeposited from bulk Pt[J]. Adv. Funct. Mater., 2022, 32(20): 2112207.
doi: 10.1002/adfm.202112207 URL
[72] Cao Z M, Chen Q L, Zhang J W, Li H Q, Jiang Y Q, Shen S Y, Fu G, Lu B A, Xie Z X, Zheng L S. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction[J]. Nat. Commun., 2017, 8: 15131.
doi: 10.1038/ncomms15131 pmid: 28436494
[73] Isarain-Chávez E, Baró M D, Alcantara C, Pané S, Sort J, Pellicer E. Micelle-assisted electrodeposition of mesoporous Fe-Pt smooth thin films and their electrocatalytic activity towards the hydrogen evolution reaction[J]. Chem-SusChem, 2018, 11(2): 367-375.
[74] Palaniappan R, Ingram D C, Botte G G. Hydrogen evolution reaction kinetics on electrodeposited Pt-M (M = Ir, Ru, Rh, and Ni) cathodes for ammonia electrolysis[J]. J. Electrochem. Soc., 2014, 161(1): E12-E22.
[75] Xu W, Du D W, Lan R, Humphreys J, Miller D N, Walker M, Wu Z C, Irvine J T S, Tao S W. Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia[J]. App. Cat. B Environ., 2018, 237: 1101-1109.
doi: 10.1016/j.apcatb.2016.11.003 URL
[76] Cherevko S, Kulyk N, Chung C H. Nanoporous Pt@AuxCu100-x by hydrogen evolution assisted electrodeposition of AuxCu100-x and galvanic replacement of Cu with Pt: Electrocatalytic properties[J]. Langmuir, 2012, 28(6): 3306-3315.
doi: 10.1021/la203625e pmid: 22256895
[77] Eiler K, Suriñach S, Sort J, Pellicer E. Mesoporous Ni-rich Ni-Pt thin films: Electrodeposition, characterization and performance toward hydrogen evolution reaction in acidic media[J]. App. Cat. B Environ., 2020, 265: 118597.
doi: 10.1016/j.apcatb.2020.118597 URL
[78] Xu L, Cao L L, Xu W, Pei Z H. One-step electrosynthesis of NiFe-NF electrodes for highly efficient overall water splitting[J]. Appl. Surf. Sci., 2020, 503: 144122.
doi: 10.1016/j.apsusc.2019.144122 URL
[79] Glasscott M W, Pendergast A D, Goines S, Bishop A R, Hoang A T, Renault C, Dick J E. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis[J]. Nat. Commun., 2019, 10: 2650.
doi: 10.1038/s41467-019-10303-z pmid: 31201304
[80] Lee J K, Yi Y, Lee H J, Uhm S, Lee J. Electrocatalytic activity of Ni nanowires prepared by galvanic electrodeposition for hydrogen evolution reaction[J]. Catal. Today, 2009, 146(1-2): 188-191.
doi: 10.1016/j.cattod.2008.12.007 URL
[81] Shao Q, Wang Y, Yang S Z, Lu K Y, Zhang Y, Tang C Y, Song J, Feng Y G, Xiong L K, Peng Y, Li Y F, Xin H L L, Huang X Q. Stabilizing and activating metastable nickel nanocrystals for highly efficient hydrogen evolution electrocatalysis[J]. ACS Nano, 2018, 12(11): 11625-11631.
doi: 10.1021/acsnano.8b06896 pmid: 30481970
[82] Wen X D, Yang X Y, Li M, Bai L, Guan J Q. Co/CoOx nanoparticles inlaid onto nitrogen-doped carbon-graphene as a trifunctional electrocatalyst[J]. Electrochim. Acta, 2019, 296: 830-841.
doi: 10.1016/j.electacta.2018.11.129 URL
[83] Chang T Y, Zhang B H, Cong W B, Luo Y. Study on hydrogen evolution performance of nickel-tin electrode[J]. J. Electrochem., 2002, (3): 343-347.
[84] Lu S G, Li Q, Liu Q G, Lu C, Dang B, Yang H X. The hydrogen evolution reaction on the hydrogen storage alloy electrode[J]. J. Electrochem., 1998, (3): 265-272.
[85] Yu W Z, Ma J, Chu Y M, Zhu H Z, Wang H J, Liu S C. Hydrogen evolution reaction on nanocrystalline Co-Mo/Ni composite-coated electrodes[J]. J. Electrochem., 1996, (1): 47-53.
[86] Wu Z X, Wang J, Guo J P, Zhu J, Wang D L. Recent progresses in molybdenum-based electrocatalysts for the hydrogen evolution reaction[J]. J. Electrochem., 2016, 22(2): 192-204.
[87] Ding L, Li K, Xie Z Q, Yang G Q, Yu S L, Wang W T, Yu H R, Baxter J, Meyer H M, Cullen D A, Zhang F Y. Constructing ultrathin W-doped nife nanosheets via facile electrosynthesis as bifunctional electrocatalysts for efficient water splitting[J]. ACS Appl. Mater. Interfaces, 2021, 13(17): 20070-20080.
doi: 10.1021/acsami.1c01815 URL
[88] Zhang L, Liu B R, Zhang N, Ma M M. Electrosynthesis of Co3O4 and Co(OH)2 ultrathin nanosheet arrays for efficient electrocatalytic water splitting in alkaline and neutral media[J]. Nano Res., 2018, 11(1): 323-333.
doi:
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons