Abstract
Phase engineering is considered as an effective method for modulating the electronic structure and catalytic activity of catalysts. The disordered conformation of amorphous materials allows flexible reforming of the surface electronic structure, showing their attractiveness as catalysts for hydrogen evolution reaction (HER). Herein, we designed and developed an amorphous ruthenium dioxide (a-RuO2) catalyst with a disordered Ru-O configuration. The conformational relationship between Ru-O ordering and HER performance is established by combining advanced electron microscopic techniques with detailed electrochemical tests. Specifically, the disordered Ru-O coordination significantly enhanced the HER catalytic activity in both acidic and alkaline media, ultimately leading to HER performance of a-RuO2 approaching that of commercial Pt/C with higher economics. In addition, a-RuO2 exhibited excellent stability after 10 h current-time (i-t) testing at 10 mA·cm-2. Further theoretical simulations showed that the lowered d-band center and optimized electron transport of a-RuO2 modulated the adsorption strength of the active site to the intermediate reactants, promoting HER kinetics. This work provides a new perspective for exploring highly active HER catalysts through phase engineering.
Graphical Abstract
Keywords
phase engineering, hydrogen evolution reaction, amorphous catalyst, electronic structure
Publication Date
2022-10-28
Online Available Date
2022-09-30
Revised Date
2022-08-28
Received Date
2022-07-09
Recommended Citation
Xue Sun, Ya-Jie Song, Ren-Long Li, Jia-Jun Wang.
Catalytic Effect of Disordered Ru-O Configurations for Electrochemical Hydrogen Evolution[J]. Journal of Electrochemistry,
2022
,
28(10): 2214011.
DOI: 10.13208/j.electrochem.2214011
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss10/3
References
[1]
Pei Y, Cheng Y, Chen J Y, Smith W, Dong P, Ajayan P M, Ye M X, Shen J F. Recent developments of transition metal phosphides as catalysts in the energy conversionfield[J]. J. Mater. Chem. A, 2018, 6(46): 23220-23243.
doi: 10.1039/C8TA09454C
URL
[2]
Shi Y, Ma Z R, Xiao Y Y, Yin Y C, Huang W M, Huang Z C, Zheng Y Z, Mu F Y, Huang R, Shi G Y, Sun Y Y, Xia X H, Chen W. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction[J]. Nat. Commun., 2021, 12(1): 3021.
doi: 10.1038/s41467-021-23306-6
pmid: 34021141
[3]
Li L G, Wang P T, Shao Q, Huang X Q. Metallic nanostructures with low dimensionality for electrochemical water splitting[J]. Chem. Soc. Rev., 2020, 49(10): 3072-3106.
doi: 10.1039/d0cs00013b
pmid: 32309830
[4]
Jiao Y, Zheng Y, Jaroniec M T, Qiao S Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chem. Soc. Rev., 2015, 44(8): 2060-2086.
doi: 10.1039/c4cs00470a
pmid: 25672249
[5]
Zhao D, Sun K A, Cheong W C, Zheng L R, Zhang C, Liu S J, Cao X, Wu K L, Pan Y, Zhuang Z W, Hu B T, Wang D S, Peng Q, Chen C, Li Y D. Synergistically interactive pyridinic-n-MoP sites: Identified active centers for enhanced hydrogen evolution in alkaline solution[J]. Angew. Chem. Int. Ed., 2020, 59(23): 8982-8990.
doi: 10.1002/anie.201908760
pmid: 31515887
[6]
Xia J W, Volokh M, Peng G M, Fu Y S, Wang X, Shalom M. Low-cost porous ruthenium layer deposited on nickel foam as a highly active universal-pH electrocatalyst for the hydrogen evolution reaction[J]. ChemSusChem, 2019, 12(12): 2780-2787.
doi: 10.1002/cssc.201900472
pmid: 30938925
[7]
Zheng Y, Jiao Y, Zhu Y H, Li L H, Han Y, Chen Y, Jaroniec M, Qiao S Z. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst[J]. J. Am. Chem. Soc., 2016, 138(49): 16174-16181.
pmid: 27960327
[8]
Wang Y, Kong B, Zhao D Y, Wang H T, Selomulya C. Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting[J]. Nano Today, 2017, 15: 26-55.
doi: 10.1016/j.nantod.2017.06.006
URL
[9]
Han Z, Zhang R L, Duan J J, Wang A J, Zhang Q L, Huang H, Feng J J. Platinum-rhodium alloyed dendritic nanoass-emblies: An all-pH efficient and stable electrocatalyst for hydrogen evolution reaction[J]. Int. J. Hydrogen Energy, 2020, 45(11): 6110-6119.
doi: 10.1016/j.ijhydene.2019.12.155
URL
[10]
Hu J, Zhang C X, Jiang L, Lin H, An Y M, Zhou D, Leung M K H, Yang S H. Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media[J]. Joule, 2017, 1(2): 383-393.
doi: 10.1016/j.joule.2017.07.011
URL
[11]
Cheng C, Shah S S A, Najam T, Qi X Q, Wei Z D. Improving the electrocatalytic activity for hydrogen evolution reaction by lowering the electrochemical impedance of RuO2/Ni-P[J]. Electrochim. Acta, 2018, 260: 358-364.
doi: 10.1016/j.electacta.2017.12.024
URL
[12]
Liu J L, Zheng Y, Jiao Y, Wang Z Y, Lu Z G, Vasileff A, Qiao S Z. NiO as a bifunctional promoter for RuO2 toward superior overall water splitting[J]. Small, 2018, 14(16): 1704073.
doi: 10.1002/smll.201704073
URL
[13]
Xia Y J, Wu W Q, Wang H, Rao S L, Zhang F Y, Zou G F. Amorphous RuS2 electrocatalyst with optimized active sites for hydrogen evolution[J]. Nanotechnology, 2020, 31(14): 145401.
doi: 10.1088/1361-6528/ab62d3
URL
[14]
Shin S, Jin Z, Kwon D H, Bose R, Min Y S. High turnover frequency of hydrogen evolution reaction on amorphous MoS2 thin film directly grown by atomic layer deposition[J]. Langmuir, 2015, 31(3): 1196-1202.
doi: 10.1021/la504162u
URL
[15]
Cao D, Wang J Y, Xu H X, Cheng D J. Growth of highly active amorphous RuCu nanosheets on Cu nanotubes for the hydrogen evolution reaction in wide pH values[J]. Small, 2020, 16(37): 2000924.
doi: 10.1002/smll.202000924
URL
[16]
Wang J, Hu J, Niu S Q, Li S W, Du Y C, Xu P. Crystalline-amorphous Ni2P4O12/NiMoOx nanoarrays for alkaline water electrolysis: Enhanced catalytic activity via in situ surface reconstruction[J]. Small, 2022, 18(10): 2105972.
doi: 10.1002/smll.202105972
URL
[17]
Arenal R, Lopez-Bezanilla A. In situ formation of carbon nanotubes encapsulated within boron nitride nanotubes via electron irradiation[J]. ACS Nano, 2014, 8(8): 8419-8425.
pmid: 25061660
[18] Norskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Norskov J K. Trends in the exchange current for hydrogen evolution[J]. J. Electrochem. Soc., 2005, 152(3): J23-J26.
[19]
Wu H M, Feng C Q, Zhang L, Zhang J J, Wilkinson D P. Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis[J]. Electrochem. Energy Rev., 2021, 4(3): 473-507.
doi: 10.1007/s41918-020-00086-z
URL
[20]
Zhang L J, Jang H, Liu H H, Kim M G, Yang D J, Liu S G, Liu X E, Cho J. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: A robust pH-universal oxygen evolution electrocatalyst[J]. Angew. Chem. Int. Ed., 2021, 60(34): 18821-18829.
doi: 10.1002/anie.202106631
URL
[21]
Rochefort D, Dabo P, Guay D, Sherwood P M A. XPS investigations of thermally prepared RuO2 electrodes in reductive conditions[J]. Electrochim. Acta, 2003, 48(28): 4245-4252.
doi: 10.1016/S0013-4686(03)00611-X
URL
[22] Wang Y T, Li H J, Zhou W, Zhang X, Zhang B, Yu Y F. Structurally disordered RuO2 nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia[J]. Angew. Chem. Int. Ed., 2022, 61(19): e202202604.
[23]
Zhang Y J, Xu Z F, Li G Y, Huang X J, Hao W C, Bi Y P. Direct observation of oxygen vacancy self-healing on TiO2 photocatalysts for solar water splitting[J]. Angew. Chem. Int. Ed., 2019, 58(40): 14229-14233.
doi: 10.1002/anie.201907954
URL
[24]
Johannes M D, Stux A M, Swider-Lyons K E. Electronic structure and properties of Li-insertion materials: Li2RuO3 and RuO2[J]. Phys. Rev. B, 2008, 77(7): 075124.
doi: 10.1103/PhysRevB.77.075124
URL
[25]
Qiu H J, Ito Y, Cong W T, Tan Y W, Liu P, Hirata A, Fujita T, Tang Z, Chen M W. Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production[J]. Angew. Chem. Int. Ed., 2015, 54(47): 14031-14035.
doi: 10.1002/anie.201507381
pmid: 26474177
[26]
Huang H W, Jung H, Li S F, Kim S, Han J W, Lee J. Activation of inert copper for significantly enhanced hydrogen evolution behaviors by trace ruthenium doping[J]. Nano Energy, 2022, 92: 106763.
doi: 10.1016/j.nanoen.2021.106763
URL
[27]
Shang H S, Zhao Z H, Pei J J, Jiang Z L, Zhou D N, Li A, Dong J C, An P F, Zheng L R, Chen W X. Dynamic evolution of isolated Ru-FeP atomic interface sites for promoting the electrochemical hydrogen evolution reaction[J]. J. Mater. Chem. A, 2020, 8(43): 22607-22612.
doi: 10.1039/D0TA08940K
URL
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons