•  
  •  
 

Corresponding Author

Jia-Jun Wang(jiajunhit@hit.edu.cn)

Abstract

Phase engineering is considered as an effective method for modulating the electronic structure and catalytic activity of catalysts. The disordered conformation of amorphous materials allows flexible reforming of the surface electronic structure, showing their attractiveness as catalysts for hydrogen evolution reaction (HER). Herein, we designed and developed an amorphous ruthenium dioxide (a-RuO2) catalyst with a disordered Ru-O configuration. The conformational relationship between Ru-O ordering and HER performance is established by combining advanced electron microscopic techniques with detailed electrochemical tests. Specifically, the disordered Ru-O coordination significantly enhanced the HER catalytic activity in both acidic and alkaline media, ultimately leading to HER performance of a-RuO2 approaching that of commercial Pt/C with higher economics. In addition, a-RuO2 exhibited excellent stability after 10 h current-time (i-t) testing at 10 mA·cm-2. Further theoretical simulations showed that the lowered d-band center and optimized electron transport of a-RuO2 modulated the adsorption strength of the active site to the intermediate reactants, promoting HER kinetics. This work provides a new perspective for exploring highly active HER catalysts through phase engineering.

Graphical Abstract

Keywords

phase engineering, hydrogen evolution reaction, amorphous catalyst, electronic structure

Publication Date

2022-10-28

Online Available Date

2022-09-30

Revised Date

2022-08-28

Received Date

2022-07-09

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.