Abstract
Hydrogen production from water electrolysis is a sustainable and environmentally benign strategy in comparison with fossil fuel-based hydrogen. However, this promising technique suffers from the high energy consumption and unsatisfactory cost due to the sluggish kinetics of both half reaction and inferior stability of electrocatalysts. To address this challenge, herein, we present a timely and comprehensive review on advances in alkaline water electrolysis that is already commercialized for large scale hydrogen production. The design principles and strategies with aiming to promote the performance of hydrogen generation are discussed from the view of electrocatalyst, electrode, reaction and system. The challenges and related prospects are presented at last, hopefully to provide essential ideas and to promote the wide application of hydrogen production.
Graphical Abstract
Keywords
water electrolysis, hydrogen production, integrated electrode, coupled reaction
Publication Date
2022-10-28
Online Available Date
2022-08-03
Revised Date
2022-07-12
Received Date
2022-06-29
Recommended Citation
Wen-Fu Xie, Ming-Fei Shao.
Alkaline Water Electrolysis for Efficient Hydrogen Production[J]. Journal of Electrochemistry,
2022
,
28(10): 2214008.
DOI: 10.13208/j.electrochem.2214008
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss10/4
References
[1] Wang J, Gao Y, Kong H, Kim J, Choi S, Ciucci F, Hao Y, Yang S, Shao Z, Lim J. Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances[J]. Chem. Soc. Rev., 2020, 49(24): 9154-9196.
doi: 10.1039/d0cs00575d pmid: 33140778
[2] Xu L L, Ren D Y, Zhao X F, Yi Y. Janus-TiNbCO2 for hydrogen evolution reaction with high conductivity and catalytic activity[J]. J. Electrochem., 2021, 27(5): 570-578.
[3] Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M, Peng B W, Yu L, Yu Y. Roles of heteroatoms in electrocatalysts for alkaline water splitting: A review focusing on the reaction mechanism[J]. Chinese J. Catal., 2022, 43(8): 2091-2110.
doi: 10.1016/S1872-2067(21)64052-4 URL
[4] Boppella R, Tan J, Yang W, Moon J. Homologous CoP/NiCoP heterostructure on N-doped carbon for highly efficient and pH-universal hydrogen evolution electrocatalysis[J]. Adv. Funct. Mater., 2019, 29(6): 1807976.
doi: 10.1002/adfm.201807976 URL
[5] Cao X Y, Xia J F, Meng X, Xu J Y, Liu Q Y, Wang Z H. Stimuli-responsive DNA-gated nanoscale porous carbon derived from ZIF-8[J]. Adv. Funct. Mater., 2019, 29(34): 1902237.
doi: 10.1002/adfm.201902237 URL
[6] Wu Y P, Zhou W, Zhao J, Dong W W, Lan Y Q, Li D S, Sun C H, Bu X H. Surfactant-assisted phase-selective synthesis of new cobalt MOFs and their efficient electrocatalytic hydrogen evolution reaction[J]. Angew. Chem. Int. Ed., 2017, 56(42): 13001-13005.
doi: 10.1002/anie.201707238 URL
[7] Tang C, Gan L F, Zhang R, Lu W B, Jiang X E, Asiri A M, Sun X P, Wang J, Chen L. Ternary FexCo1-xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight[J]. Nano Lett., 2016, 16(10): 6617-6621.
doi: 10.1021/acs.nanolett.6b03332 URL
[8] He Y M, Liu L R, Zhu C, Guo S S, Golani P, Koo B, Tang P Y, Zhao Z Q, Xu M Z, Yu P, Zhou X, Gao C T, Wang X W, Shi Z D, Zheng L, Yang J F, Shin B, Arbiol J, Duan H G, Du Y H, Heggen M, Dunin-Borkowski R E, Guo W L, Wang Q J, Zhang Z H, Liu Z. Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production[J]. Nat. Catal., 2022, 5(3): 212-221.
doi: 10.1038/s41929-022-00753-y URL
[9] Zhang J Q, Zhao Y F, Guo X, Chen C, Dong C L, Liu R S, Han C P, Li Y D, Gogotsi Y, Wang G X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction[J]. Nat. Catal., 2018, 1(12): 985-992.
doi: 10.1038/s41929-018-0195-1 URL
[10] Cao E P, Chen Z M, Wu H, Yu P, Wang Y, Xiao F, Chen S, Du S C, Xie Y, Wu Y Q, Ren Z Y. Boron-induced electronic-structure reformation of CoP nanoparticles drives enhanced pH-universal hydrogen evolution[J]. An-gew. Chem. Int. Ed., 2020, 59(10): 4154-4160.
[11] Xu J Y, Liu T F, Li J J, Li B, Liu Y F, Zhang B S, Xiong D H, Amorim I, Li W, Liu L F. Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide[J]. Energy Environ. Sci., 2018, 11(7): 1819-1827.
doi: 10.1039/C7EE03603E URL
[12] Zheng Z L, Yu L, Gao M, Chen X Y, Zhou W, Ma C, Wu L H, Zhu J F, Meng X Y, Hu J T, Tu Y C, Wu S S, Mao J, Tian Z Q, Deng D H. Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer[J]. Nat. Commun., 2020, 11(1): 3315.
doi: 10.1038/s41467-020-17199-0 URL
[13] Liu W, Wang X T, Wang F, Du K F, Zhang Z F, Guo Y Z, Yin H Y, Wang D H. A durable and pH-universal self-standing MoC-Mo2C heterojunction electrode for efficient hydrogen evolution reaction[J]. Nat. Commun., 2021, 12(1): 6776.
doi: 10.1038/s41467-021-27118-6 URL
[14] Jiang K, Liu B Y, Luo M, Ning S C, Peng M, Zhao Y, Lu Y R, Chan T S, de Groot F M F, Tan Y W. Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction[J]. Nat. Commun., 2019, 10(1): 1743.
doi: 10.1038/s41467-019-09765-y pmid: 30988327
[15] Zhang R, Wang X X, Yu S J, Wen T, Zhu X W, Yang F X, Sun X N, Wang X K, Hu W P. Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction[J]. Adv. Mater., 2017, 29(9): 1605502.
doi: 10.1002/adma.201605502 URL
[16] Zhang X, Yu X L, Zhang L J, Zhou F, Liang Y Y, Wang R H. Molybdenum phosphide/carbon nanotube hybrids as pH-universal electrocatalysts for hydrogen evolution reaction[J]. Adv. Funct. Mater., 2018, 28(16): 1706523.
doi: 10.1002/adfm.201706523 URL
[17] Tian F Y, Geng S, He L, Huang Y R, Fauzi A, Yang W W, Liu Y Q, Yu Y S. Interface engineering: PSS-PPy wrapping amorphous Ni-Co-P for enhancing neutral-pH hydrogen evolution reaction performance[J]. Chem. Eng. J., 2021, 417: 129232.
doi: 10.1016/j.cej.2021.129232 URL
[18] Gupta S, Patel N, Miotello A, Kothari D C. Cobalt-boride: an efficient and robust electrocatalyst for hydrogen evolution reaction[J]. J. Power Sources, 2015, 279: 620-625.
doi: 10.1016/j.jpowsour.2015.01.009 URL
[19] Gao R, Dai Q B, Du F, Yan D P, Dai L M. C60-adsorbed single-walled carbon nanotubes as metal-free, pH-universal, and multifunctional catalysts for oxygen reduction, oxygen evolution, and hydrogen evolution[J]. J. Am. Chem. Soc., 2019, 141(29): 11658-11666.
doi: 10.1021/jacs.9b05006 URL
[20] Yang M J, Zhang Y, Jian J H, Fang L, Li J, Fang Z S, Yuan Z K, Dai L M, Chen X D, Yu D S. Donor-acceptor nanocarbon ensembles to boost metal-free all-pH hydrogen evolution catalysis by combined surface and dual electronic modulation[J]. Angew. Chem. Int. Ed., 2019, 58(45): 16217-16222.
doi: 10.1002/anie.201907826 pmid: 31424611
[21] Feng L L, Yu G T, Wu Y Y, Li G D, Li H, Sun Y H, Asefa T, Chen W, Zou X X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting[J]. J. Am. Chem. Soc., 2015, 137(44): 14023-14026.
doi: 10.1021/jacs.5b08186 URL
[22] Cao D F, Sheng B B, Qi Z H, Xu W J, Chen S M, Moses O A, Long R, Xiong Y J, Wu X J, Song L. Self-optimizing iron phosphorus oxide for stable hydrogen evolution at high current[J]. Appl. Catal. B Environ., 2021, 298: 120559.
doi: 10.1016/j.apcatb.2021.120559 URL
[23] Zhang S C, Wang W B, Hu F L, Mi Y, Wang S Z, Liu Y W, Ai X M, Fang J K, Li H Q, Zhai T Y. 2D CoOOH sheet-encapsulated Ni2P into tubular arrays realizing 1000 mA·cm-2-level-current-density hydrogen evolution over 100 h in neutral water[J]. Nano-Micro Lett., 2020, 12(1): 140.
[24] Xu Q C, Jiang H, Zhang H X, Hu Y J, Li C Z. Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting[J]. Appl. Catal. B Environ., 2019, 242: 60-66.
doi: 10.1016/j.apcatb.2018.09.064 URL
[25] Liu Y, Yang Y P, Peng Z K, Liu Z Y, Chen Z M, Shang L, Lu S Y, Zhang T R. Self-crosslinking carbon dots loaded ruthenium dots as an efficient and super-stable hydrogen production electrocatalyst at all pH values[J]. Nano Energy, 2019, 65: 104023.
doi: 10.1016/j.nanoen.2019.104023 URL
[26] Yang F N, Luo Y T, Yu Q M, Zhang Z Y, Zhang S, Liu Z B, Ren W C, Cheng H M, Li J, Liu B L. A durable and efficient electrocatalyst for saline water splitting with current density exceeding 2000 mA·cm-2[J]. Adv. Funct. Mater., 2021, 31(21): 2010367.
doi: 10.1002/adfm.202010367 URL
[27] Nairan A, Liang C W, Chiang S W, Wu Y, Zou P C, Khan U, Liu W D, Kang F Y, Guo S J, Wu J B, Yang C. Proton selective adsorption on Pt-Ni nano-thorn array electrodes for superior hydrogen evolution activity[J]. Energy Environ. Sci., 2021, 14(3): 1594-1601.
doi: 10.1039/D1EE00106J URL
[28] Wu L B, Zhang F H, Song S W, Ning M H, Zhu Q, Zhou J Q, Gao G H, Chen Z Y, Zhou Q C, Xing X X, Tong T, Yao Y, Bao J M, Yu L, Chen S, Ren Z F. Efficient alkaline water/seawater hydrogen evolution by a nanorod-nanoparticle-structured Ni-MoN catalyst with fast water-dissociation kinetics[J]. Adv. Mater., 2022, 34(21): 2201774.
doi: 10.1002/adma.202201774 URL
[29] Wu X K, Wang Z C, Zhang D, Qin Y N, Wang M H, Han Y, Zhan T R, Yang B, Li S X, Lai J P, Wang L. Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution[J]. Nat. Commun., 2021, 12(1): 4018.
doi: 10.1038/s41467-021-24322-2 URL
[30] Menezes P W, Indra A, Zaharieva I, Walter C, Loos S, Hoffmann S, Schlögl R, Dau H, Driess M. Helical cobalt borophosphates to master durable overall water-splitting[J]. Energy Environ. Sci., 2019, 12(3): 988-999.
doi: 10.1039/C8EE01669K URL
[31] Qian G F, Chen J L, Yu T Q, Luo L, Yin S B. N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density[J]. Nano-Micro Lett., 2021, 13(1): 77.
doi: 10.1007/s40820-021-00607-5 pmid: 34138320
[32] Xie W F, Li Z H, Shao M F, Wei M. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(3): 537-554.
doi: 10.1007/s11705-018-1719-6
[33] Yu Z Y, Duan Y, Feng X Y, Yu X X, Gao M R, Yu S H. Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects[J]. Adv. Mater., 2021, 33(31): 2007100.
doi: 10.1002/adma.202007100 URL
[34] Lagadec M F, Grimaud A. Water electrolysers with closed and open electrochemical systems[J]. Nat. Mater., 2020, 19(11): 1140-1150.
doi: 10.1038/s41563-020-0788-3 pmid: 33020614
[35] Li M T, Zheng X Q, Li L, Wei Z D. Research progress of hydrogen oxidation and hydrogen evolution reaction mechanism in alkaline media[J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007054.
[36] Qin X P, Zhu S Q, Zhang L L, Sun S H, Shao M H. Theoretical studies of metal-N-C for oxygen reduction and hydrogen evolution reactions in acid and alkaline solutions[J]. J. Electrochem., 2021, 27(2): 185-194.
[37] Zhang S B, Wu Y F, Zhang Y X, Niu Z Q. Dual-atom catalysts: controllable synthesis and electrocatalytic applications[J]. Sci. China Chem., 2021, 64(11): 1908-1922.
doi: 10.1007/s11426-021-1106-9 URL
[38] Norskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Norskov J K. Trends in the exchange current for hydrogen evolution[J]. J. Electrochem. Soc., 2005, 152(3): 23-26.
[39] Hinnemann B, Moses P G, Bonde J, Jörgensen K P, Nielsen J H, Horch S, Chorkendorff I, Nörskov J K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution[J]. J. Am. Chem. Soc., 2005, 127(15): 5308-5309.
pmid: 15826154
[40] Jaramillo Thomas F, Jörgensen Kristina P, Bonde J, Nielsen Jane H, Horch S, Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007, 317(5834): 100-102.
pmid: 17615351
[41] Zheng Y, Jiao Y, Zhu Y H, Li L H, Han Y, Chen Y, Du A J, Jaroniec M, Qiao S Z. Hydrogen evolution by a metal-free electrocatalyst[J]. Nat. Commun., 2014, 5(1): 3783.
doi: 10.1038/ncomms4783 URL
[42] Tian J Q, Liu Q, Asiri A M, Sun X P. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14[J]. J. Am. Chem. Soc., 2014, 136(21): 7587-7590.
doi: 10.1021/ja503372r pmid: 24830333
[43] Chen Y J, Ji S F, Chen C, Peng Q, Wang D S, Li Y D. Single-atom catalysts: synthetic strategies and electrochemical applications[J]. Joule, 2018, 2(7): 1242-1264.
doi: 10.1016/j.joule.2018.06.019 URL
[44] Cheng N C, Stambula S, Wang D, Banis M N, Liu J, Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton G A, Sun X L. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nat. Commun., 2016, 7(1): 13638.
doi: 10.1038/ncomms13638 URL
[45] Li A L, Ooka H, Bonnet N, Hayashi T, Sun Y M, Jiang Q K, Li C, Han H X, Nakamura R. Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions[J]. Angew. Chem. Int. Ed., 2019, 58(15): 5054-5058.
doi: 10.1002/anie.201813361 pmid: 30869187
[46] Yang F N, Luo Y T, Yu Q M, Zhang Z Y, Zhang S, Liu Z B, Ren W C, Cheng H M, Li J, Liu B L. A durable and efficient electrocatalyst for saline water splitting with current density exceeding 2000 mA·cm-2[J]. Adv. Funct. Mater., 2021, 31(21): 2010367.
doi: 10.1002/adfm.202010367 URL
[47] Kosmala T, Baby A, Lunardon M, Perilli D, Liu H, Durante C, Di Valentin C, Agnoli S, Granozzi G. Operando visualization of the hydrogen evolution reaction with atomic-scale precision at different metal-graphene interfaces[J]. Nat. Catal., 2021, 4(10): 850-859.
doi: 10.1038/s41929-021-00682-2 URL
[48] Shao M F, Zhang R K, Li Z H, Wei M, Evans D G, Duan X. Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications[J]. Chem. Commun., 2015, 51(88): 15880-15893.
doi: 10.1039/C5CC07296D URL
[49] Li J M, Jiang S, Shao M F, Wei M. Host-guest engineering of layered double hydroxides towards efficient oxygen evolution reaction: recent advances and perspectives[J]. Catalysts, 2018, 8(5): 214.
doi: 10.3390/catal8050214 URL
[50] Wang D S. 2D materials modulating layered double hydroxides for electrocatalytic water splitting[J]. Chinese J Catal., 2022, 43(6): 1380-1398.
doi: 10.1016/S1872-2067(21)63987-6 URL
[51] Zhou L, Shao M F, Wei M, Duan X. Advances in efficient electrocatalysts based on layered double hydroxides and their derivatives[J]. J. Energy Chem., 2017, 26(6): 1094-1106.
doi: 10.1016/j.jechem.2017.09.015 URL
[52] Zhang L H, Chuai H Y, Liu H, Fan Q, Kuang S Y, Zhang S, Ma X B. Facet dependent oxygen evolution activity of spinel cobalt oxides[J]. J. Electrochem., 2022, 28(2): 2108481.
doi: 10.13208/j.electrochem.210848
[53] Liu Y K, Jiang S, Li S J, Zhou L, Li Z H, Li J M, Shao M F. Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting[J]. Appl. Catal. B Environ., 2019, 247: 107-114.
doi: 10.1016/j.apcatb.2019.01.094 URL
[54] Zhou L, Shao M F, Li J B, Jiang S, Wei M, Duan X. Two-dimensional ultrathin arrays of CoP: electronic modulation toward high performance overall water splitting[J]. Nano Energy, 2017, 41: 583-590.
doi: 10.1016/j.nanoen.2017.10.009 URL
[55] Li Z H, Shao M F, An H L, Wang Z X, Xu S M, Wei M, Evans D G, Duan X. Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions[J]. Chem. Sci., 2015, 6(11): 6624-6631.
doi: 10.1039/c5sc02417j pmid: 29435211
[56] Li Z H, Shao M F, Zhou L, Zhang R K, Zhang C, Wei M, Evans D G, Duan X. Directed growth of metal-organic frameworks and their derived carbon-based network for efficient electrocatalytic oxygen reduction[J]. Adv. Mater., 2016, 28(12): 2337-2344.
doi: 10.1002/adma.201505086 URL
[57] Song Y J, Li Z H, Fan K, Ren Z, Xie W F, Yang Y S, Shao M F, Wei M. Ultrathin layered double hydroxides nanosheets array towards efficient electrooxidation of 5-hydroxymethylfurfural coupled with hydrogen generation[J]. Appl. Catal. B Environ., 2021, 299: 120699.[58] Gao R, Zhu J, Yan D P. Transition metal-based layered double hydroxides for photo(electro)chemical water splitting: a mini review[J]. Nanoscale, 2021, 13(32): 13593-13603.
doi: 10.1039/d1nr03409j pmid: 34477633
[59] Zhou L, Jiang S, Liu Y K, Shao M F, Wei M, Duan X. Ultrathin CoNiP@layered double hydroxides core-shell nanosheets arrays for largely enhanced overall water splitting[J]. ACS Appl. Energy Mater., 2018, 1(2): 623-631.
doi: 10.1021/acsaem.7b00151 URL
[60] Li A, Zhang L, Wang F Z, Zhang L, Li L, Chen H M, Wei Z D. Rational design of porous Ni-Co-Fe ternary metal phosphides nanobricks as bifunctional electrocatalysts for efficient overall water splitting[J]. Appl. Catal. B Environ., 2022, 310: 121353.
doi: 10.1016/j.apcatb.2022.121353 URL
[61] Wang Z J, Guo P, Cao S F, Chen H Y, Zhou S N, Liu H H, Wang H W, Zhang J B, Liu S Y, Wei S X, Sun D F, Lu X Q. Contemporaneous inverse manipulation of the valence configuration to preferred CO2+ and Ni3+ for enhanced overall water electrocatalysis[J]. Appl. Catal. B Environ., 2021, 284: 119725.
doi: 10.1016/j.apcatb.2020.119725 URL
[62] Zhao Y, Gao Y X, Chen Z, Li Z J, Ma T Y, Wu Z X, Wang L. Trifle Pt coupled with NiFe hydroxide synthesized via corrosion engineering to boost the cleavage of water molecule for alkaline water-splitting[J]. Appl. Catal. B Environ., 2021, 297: 120395.
doi: 10.1016/j.apcatb.2021.120395 URL
[63] Zhang L, Wang X Y, Li A, Zheng X Q, Peng L S, Huang J W, Deng Z H, Chen H M, Wei Z D. Rational construction of macroporous CoFeP triangular plate arrays from bimetal-organic frameworks as high-performance overall water-splitting catalysts[J]. J. Mater. Chem. A, 2019, 7(29): 17529-17535.
doi: 10.1039/c9ta05282h
[64] Chen L, Wang Y P, Zhao X, Wang Y C, Li Q, Wang Q C, Tang Y G, Lei Y P. Trimetallic oxyhydroxides as active sites for large-current-density alkaline oxygen evolution and overall water splitting[J]. J. Mater. Sci. Technol., 2022, 110: 128-135.
doi: 10.1016/j.jmst.2021.08.083
[65] Liu H H, Yan Z H, Chen X, Li J H, Zhang L, Liu F M, Fan G L, Cheng F Y. Electrodeposition of Pt-decorated Ni(OH)2/CeO2 hybrid as superior bifunctional electrocatalyst for water splitting[J]. Research, 2020, 2020: 9068270.[66] Xie W F, Song Y K, Li S J, Shao M F, Wei M. Integrated nanostructural electrodes based on layered double hydroxides[J]. Energy Environ. Mater., 2019, 2(3): 158-171.
doi: 10.1002/eem2.12033 URL
[67] Xie W F, Li H, Cui G Q, Li J B, Song Y K, Li S J, Zhang X, Lee J Y, Shao M F, Wei M. NiSn atomic pair on an integrated electrode for synergistic electrocatalytic CO2 reduction[J]. Angew. Chem. Int. Ed., 2021, 60(13): 7382-7388.
doi: 10.1002/anie.202014655 URL
[68] Li J Z, Li H, Xie W F, Li S J, Song Y K, Fan K, Lee J Y, Shao M F. Flame-assisted synthesis of O-coordinated single-atom catalysts for efficient electrocatalytic oxygen reduction and hydrogen evolution reaction[J]. Small Methods, 2022, 6(1): 2101324.
doi: 10.1002/smtd.202101324 URL
[69] Li Z H, Cui J Y, Liu Y K, Li J B, Liu K, Shao M F. Electrosynthesis of well-defined metal-organic framework films and the carbon nanotube network derived from them toward electrocatalytic applications[J]. ACS Appl. Mater. Interfaces, 2018, 10(40): 34494-34501.
doi: 10.1021/acsami.8b12854 URL
[70] Li S J, Xie W F, Song Y K, Shao M F. Layered double hydroxide@polydopamine core-shell nanosheet arrays-derived bifunctional electrocatalyst for efficient, flexible, all-solid-state zinc-air battery[J]. ACS Sustainable Chem. Eng., 2019, 8(1): 452-459.
doi: 10.1021/acssuschemeng.9b05754 URL
[71] Song Y K, Xie W F, Shao M F. Recent advances in integrated electrode for electrocatalytic carbon dioxide reduction[J]. Acta Phys. -Chim. Sin., 2021, 38(6): 2101028.
[72] Li S J, Xie W F, Song Y K, Li Y, Song Y J, Li J Z, Shao M F. Integrated CoPt electrocatalyst combined with upgrading anodic reaction to boost hydrogen evolution reaction[J]. Chem. Eng. J., 2022, 437: 135473.
doi: 10.1016/j.cej.2022.135473 URL
[73] Phillips R, Dunnill C W. Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas[J]. RSC Adv., 2016, 6(102): 100643-100651.
doi: 10.1039/C6RA22242K URL
[74] Haug P, Kreitz B, Koj M, Turek T. Process modelling of an alkaline water electrolyzer[J]. Int. J. Hydrog. Energy, 2017, 42(24): 15689-15707.
doi: 10.1016/j.ijhydene.2017.05.031 URL
[75] Song Y J, Ji K Y, Duan H H, Shao M F. Hydrogen production coupled with water and organic oxidation based on layered double hydroxides[J]. Exploration, 2021, 1(3): 210050.
[76] Li Y, Wei X F, Chen L S, Shi J L. Electrocatalytic hydrogen production trilogy[J]. Angew. Chem. Int. Ed., 2021, 60(36): 19550-19571.
doi: 10.1002/anie.202009854 URL
[77] Tang C, Zheng Y, Jaroniec M, Qiao S Z. Electrocatalytic refinery for sustainable production of fuels and chemicals[J]. Angew. Chem. Int. Ed., 2021, 60(36): 19572-19590.
doi: 10.1002/anie.202101522 pmid: 33606339
[78] Lu Y X, Liu T Y, Dong C L, Huang Y C, Li Y F, Chen J, Zou Y Q, Wang S Y. Tuning the selective adsorption site of biomass on Co3O4 by Ir single atoms for electrosynthesis[J]. Adv. Mater., 2021, 33(8): e2007056.
[79] Song Y J, Jiang S, He Y H, Wu Y, Wan X, Xie W, Wang J J, Li Z H, Duan H B, Shao M F. Metal vacancy-enriched layered double hydroxide for biomass molecule electrooxidation coupled with hydrogen production[J]. Fundam. Res., 2022: DOI: 10.1016/j.fmre.2022.1005.1023.
doi: 10.1016/j.fmre.2022.1005.1023
[80] Song Y K, Xie W F, Song Y J, Li H, Li S J, Jiang S, Lee J Y, Shao M F. Bifunctional integrated electrode for high-efficient hydrogen production coupled with 5-hydroxymethylfurfural oxidation[J]. Appl. Catal. B Environ., 2022, 312: 121400.
doi: 10.1016/j.apcatb.2022.121400 URL
[81] Li Z H, Yan Y F, Xu S M, Zhou H, Xu M, Ma L N, Shao M F, Kong X G, Wang B, Zheng L R, Duan H H. Alcohols electrooxidation coupled with H2 production at high current densities promoted by a cooperative catalyst[J]. Nat. Commun., 2022, 13(1): 147.
doi: 10.1038/s41467-021-27806-3 URL
[82] Zhou H, Li Z H, Xu S M, Lu L L, Xu M, Ji K Y, Ge R X, Yan Y F, Ma L N, Kong X G, Zheng L R, Duan H H. Selectively upgrading lignin derivativ
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons