Abstract
Transition metal phosphide (TMP) is a kind of effective catalysts toward hydrogen evolution reaction (HER) in alkaline electrolytes. However, the performance of TMP catalysts is strongly limited by water splitting. In this work, we developed a method to prepare a copper foam (CF) supported Ru-doped Cu3P catalyst (Ru-Cu3P/CF) by a consecutive growth of Cu(OH)2 nanoarrays, soaking in RuCl3 solution and phosphorization. A large surface area was obtained by the self-supported catalysts with the appropriative Ru doping. As an excellent HER catalyst, it exhibited a low overpotential of 95.6 mV at a current density of 10 mA·cm-2, which is 149.4 mV lower than that of Cu3P/CF without Ru-doping. The Tafel slope was reduced from 136.6 to 73.6 mA·dec-1 and the rate determining step was changed from Volmer step to Heyrovsky step. The improvement of HER performance might be attributed to the facilitated water splitting step by Ru-doping, which provides more active sites for water splitting. The nanoparticles morphology of Ru-Cu3P derived from the Cu(OH)2 arrays ensured large electrochemical surface areas of the supported electrodes, which could promote the mass and electron transfers, and promote gas production and bubble release. This work highlights the importance of the tuning of the water splitting step and surface engineering by the transition metal with emptier d orbitals, which may pave the road for design of high-performance HER electrocatalyst.
Graphical Abstract
Keywords
electrocatalysis, water splitting, hydrogen evolution, copper phosphide, Ru-doping
Publication Date
2022-10-28
Online Available Date
2022-08-23
Revised Date
2022-07-26
Received Date
2022-06-23
Recommended Citation
Zi-Xuan Wan, Chao-Hui Wang, Xiong-Wu Kang.
A Self-Supported Ru-Cu3P Catalyst toward Alkaline Hydrogen Evolution[J]. Journal of Electrochemistry,
2022
,
28(10): 2214005.
DOI: 10.13208/j.electrochem.2214005
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss10/6
References
[1] Zhang L H, Chuai H Y, Liu H, Fan Q, Kuang S Y, Zhang S, Ma X B. Facet dependent oxygen evolution activity of spinel cobalt oxides[J]. J. Electrochem., 2022, 28(2): 139-149.
[2] Huang R Q, Liao W P, Yan M X, Liu S, Li Y M, Kang X W. P-doped Ru-Pt alloy catalyst towards high performance alkaline hydrogen evolution reaction[J]. J. Electrochem., 2022, 27(0): 1-14.
[3] Zheng H Y, Huang X B, Gao H Y, Lu G L, Dong W J, Wang G. Cu@Cu3P core-shell nanowires attached to nickel foam as high-performance electrocatalysts for the hydrogen evolution reaction[J]. Chem. Eur. J., 2019, 25(4): 1083-1089.
[4]
Jin X, Li J, Cui Y T, Liu X Y, Zhang X L, Yao J L, Liu B D. Cu3P-Ni2P hybrid hexagonal nanosheet arrays for efficient hydrogen evolution reaction in alkaline solution[J]. Inorg. Chem., 2019, 58(17): 11630-11635.
doi: 10.1021/acs.inorgchem.9b01567
URL
[5]
Wang Z, Du H T, Liu Z, Wang H, Asiri A M, Sun X P. Interface engineering of a CeO2-Cu3P nanoarray for efficient alkaline hydrogen evolution[J]. Nanoscale, 2018, 10(5): 2213-2217.
doi: 10.1039/c7nr08472b
pmid: 29334116
[6]
Han A, Zhang H Y, Yuan R H, Ji H X, Du P W. Crystalline copper phosphide nanosheets as an efficient Janus catalyst for overall water splitting[J]. ACS Appl. Mater. Interfaces, 2017, 9(3): 2240-2248.
doi: 10.1021/acsami.6b10983
URL
[7]
Swearer D F, Zhao H Q, Zhou L N, Zhang C, Robatjazi H, Martirez J M P, Krauter C M, Yazdi S, McClain M J, Ringe E, Carter E A, Nordlander P, Halas N J. Heterometallic antenna-reactor complexes for photocatalysis[J]. Proc. Natl. Acad. Sci. U.S.A., 2016, 113(32): 8916-8920.
doi: 10.1073/pnas.1609769113
URL
[8]
Li W D, Zhao Y X, Liu Y, Sun M Z, Waterhouse G I N, Huang B L, Zhang K, Zhang T R, Lu S Y. Exploiting Ru-induced lattice strain in coru nanoalloys for robust bifunctional hydrogen production[J]. Angew. Chem. Int. Ed., 2021, 60(6): 3290-3298.
doi: 10.1002/anie.202013985
pmid: 33105050
[9] Wang Q J, Zhang Z Y, Zhao X Z, Xiao J W, Manoj D, Wei F F, Xiao F, Wang H R, Wang S. MOF-derived copper nitride/phosphide heterostructure coated by multidoped carbon as electrocatalyst for efficient water splitting and neutral-pH hydrogen evolution reaction[J]. ChemEle-ctroChem, 2020, 7(1): 289-298.
[10]
Wei S T, Qi K, Jin Z, Cao J S, Zheng W T, Chen H, Cui X Q. One-step synthesis of a self-supported copper phosphide nanobush for overall water splitting[J]. ACS Omega, 2016, 1(6): 1367-1373.
doi: 10.1021/acsomega.6b00366
pmid: 31457202
[11]
Liu L B, Ge L, Sun Y Y, Jiang B B, Cheng Y F, Xu L, Liao F, Kang Z H, Shao M W. Quasi-layer CO2P-polarized Cu3P nanocomposites with enhanced intrinsic interfacial charge transfer for efficient overall water splitting[J]. Nanoscale, 2019, 11(13): 6394-6400.
doi: 10.1039/C9NR00720B
URL
[12]
Kibsgaard J, Tsai C, Chan K, Benck J D, Nörskov J K, Abild-Pedersen F, Jaramillo T F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends[J]. Energy Environ. Sci., 2015, 8(10): 3022-3029.
doi: 10.1039/C5EE02179K
URL
[13]
Pawar S M, Pawar B S, Hou B, Kim J, Ahmed A T A, Chavan H S, Jo Y, Cho S, Inamdar A I, Gunjakar J L, Kim H, Cha S, Im H. Self-assembled two-dimensional copper oxide nanosheet bundles as an efficient oxygen evolution reaction (OER) electrocatalyst for water splitting applications[J]. J. Mater. Chem. A, 2017, 5(25): 12747-12751.
doi: 10.1039/C7TA02835K
URL
[14] Li Y, Luo Z Y, Ge J J, Liu C P, Xing W. Research pro-gress in hydrogen evolution low noble/non-precious metal catalysts of water electrolysis[J]. J. Electrochem., 2018, 24(6): 572-588.
[15]
Xu F, Lu J, Luo L L, Yu C, Tang Z, Abbo H S, Titinchi S J J, Zhu J L, Shen P K, Yin S B. Cu2S-Cu3P nanowire arrays self-supported on copper foam as boosting electrocatalysts for hydrogen evolution[J]. Energy Technol., 2019, 7(4): 1800993.
doi: 10.1002/ente.201800993
URL
[16]
Xu T Y, Wei S T, Zhang X L, Zhang D T, Xu Y C, Cui X Q. Sulfur-doped Cu3P|S electrocatalyst for hydrogen evolution reaction[J]. Mater. Res. Express., 2019, 6(7): 075501.
doi: 10.1088/2053-1591/ab1293
URL
[17] Jiang E J, Jiang J H, Huang G, Pan Z Y, Chen X Y, Wang G F, Ma S J, Zhu J L, Shen P K. Porous nanosheets of Cu3P@N,P Co-doped carbon hosted on copper foam as an efficient and ultrastable pH-universal hydrogen evolution electrocatalyst[J]. Sustain. Energy Fuels, 2021, 5(9): 2451-2457.
[18]
Tian J Q, Liu Q, Cheng N Y, Asiri A M, Sun X P. Self-supported Cu3P nanowire arrays as an integrated high-per-formance three-dimensional cathode for generating hydrogen from water[J]. Angew. Chem. Int. Ed., 2014, 53(36): 9577-9581.
doi: 10.1002/anie.201403842
URL
[19]
Luo M, Cai J Y, Zou J S, Jiang Z, Wang G M, Kang X W. Promoted alkaline hydrogen evolution by an N-doped Pt-Ru single atom alloy[J]. J. Mater. Chem. A, 2021, 9(26): 14941-14947.
doi: 10.1039/D1TA03593B
URL
[20]
Wang P T, Zhang X, Zhang J, Wan S, Guo S J, Lu G, Yao J L, Huang X Q. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis[J]. Nat. Commun., 2017, 8: 14580.
doi: 10.1038/ncomms14580
pmid: 28239145
[21]
Xie Y F, Cai J Y, Wu Y S, Zang Y P, Zheng X S, Ye J, Cui P X, Niu S W, Liu Y, Zhu J F, Liu X J, Wang G M, Qian Y T. Boosting water dissociation kinetics on Pt-Ni nanowires by N-induced orbital tuning[J]. Adv. Mater., 2019, 31(16): 1807780.
doi: 10.1002/adma.201807780
URL
[22]
Mao J J, He C T, Pei J J, Chen W X, He D S, He Y Q, Zhuang Z B, Chen C, Peng Q, Wang D S, Li Y D. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice[J]. Nat. Commun., 2018, 9: 4958.
doi: 10.1038/s41467-018-07288-6
pmid: 30470747
[23]
Chang Q B, Ma J W, Zhu Y Z, Li Z, Xu D Y, Duan X Z, Peng W C, Li Y, Zhang G L, Zhang F B, Fan X B. Controllable synthesis of ruthenium phosphides (RuP and RuP2) for pH-universal hydrogen evolution reaction[J]. ACS Sustain. Chem. Eng., 2018, 6(5): 6388-6394.
doi: 10.1021/acssuschemeng.8b00187
URL
[24]
Yao M Q, Wang B J, Sun B L, Luo L F, Chen Y J, Wang J W, Wang N, Komarneni S, Niu X B, Hu W C. Rational design of self-supported Cu@WC core-shell mesoporous nanowires for pH-universal hydrogen evolution reaction[J]. Appl. Catal. B, 2021, 280: 119451.
doi: 10.1016/j.apcatb.2020.119451
URL
[25]
Dai D M, Wei B, Li Y, Ma X, Liang S, Wang S, Xu L L. Self-supported hierarchical Fe(PO3)2@Cu3P nanotube arrays for efficient hydrogen evolution in alkaline media[J]. J. Alloys Compd., 2020, 820: 153185.
doi: 10.1016/j.jallcom.2019.153185
URL
[26] Li Y P, Zhang J H, Liu Y, Qian Q Z, Li Z Y, Zhu Y, Zhang G Q. Partially exposed RuP2 surface in hybrid structure endows its bifunctionality for hydrazine oxidation and hydrogen evolution catalysis[J]. Sci. Adv., 2020, 6(44): eabb4197.
[27]
Pu Z H, Amiinu I S, Kou Z K, Li W Q, Mu S C. RuP2-basedcatalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values[J]. Angew. Chem. Int. Ed, 2017, 56(38): 11559-11564.
doi: 10.1002/anie.201704911
URL
[28]
Yu L P, Zhang J, Dang Y L, He J K, Tobin Z, Kerns P, Dou Y H, Jiang Y, He Y H, Suib S L. In situ growth of Ni2P-Cu3P bimetallic phosphide with bicontinuous structure on self-supported NiCuC substrate as an efficient hydrogen evolution reaction electrocatalyst[J]. ACS Catal., 2019, 9(8): 6919-6928.
doi: 10.1021/acscatal.9b00494
URL
[29]
Ma X X, Chang Y Q, Zhang Z, Tang J L. Forest-like NiCoP@Cu3P supported on copper foam as bifunctional electrocatalyst for hydrogen and oxygen evolution reactions[J]. J. Mater. Chem. A, 2017, 6: 2100-2106.
doi: 10.1039/C7TA09619D
URL
[30]
Wang H, Zhou T T, Li P L, Cao Z, Xi W, Zhao Y F, Ding Y. Self-supported hierarchical nanostructured NiFe-LDH and Cu3P weaving mesh electrodes for efficient water splitting[J]. ACS Sustain. Chem. Eng., 2017, 6(1): 380-388.
doi: 10.1021/acssuschemeng.7b02654
URL
[31]
Hai X, Xi S B, Mitchell S, Harrath K, Xu H M, Akl D F, Kong D B, Li J, Li Z J, Sun T, Yang H M, Cui Y G, Su C L, Zhao X X, Li J, Pérez-Ramírez J, Lu J. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries[J]. Nat. Nanotechnol., 2022, 17(2): 174-181.
doi: 10.1038/s41565-021-01022-y
URL
[32]
Chen Z, Kronawitter C X, Koel B E. Facet-dependent activity and stability of Co3O4 nanocrystals towards the oxygen evolution reaction[J]. Phys. Chem. Chem. Phys., 2015, 17(43): 29387-29393.
doi: 10.1039/c5cp02876k
pmid: 26473390
[33]
Wan R D, Luo M, Wen J B, Liu S L, Kang X W, Tian Y. Pt-Co single atom alloy catalysts: Accelerated water dissociation and hydrogen evolution by strain regulation[J]. J. Energy Chem., 2022, 69: 44-53.
doi: 10.1016/j.jechem.2021.12.045
URL
[34]
Wei Z Q, Hu X, Ning S L, Kang X W, Chen S W. Supported heterostructured MoC/Mo2C nanoribbons and nanoflowers as highly active electrocatalysts for hydrogen evolution reaction[J]. ACS Sustain. Chem. Eng., 2019, 7(9): 8458-8465.
doi: 10.1021/acssuschemeng.9b00210
URL
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons