Abstract
The dissolution and “shuttle effect” of lithium polysulfides (LiPSs) hinder the application of lithium-sulfur (Li-S) batteries. To solve those problems, inspired by natural materials, a nano-hydroxyapatite@porous carbon derived from chicken cartilage (nano-HA@CCPC) was fabricated by employing a simple pre-carbonization and carbonization method, and applied in Li-S batteries. The nano-HA@CCPC would provide a reactive interface that allows efficient LiPSs reduction. With a strong affinity for LiPSs and an excellent electronic conductive path for converting LiPSs, the shuttle effect of LiPSs was confined and the redox kinetics of LiPSs was substantially enhanced. Li-S batteries employing nano-HA@CCPC-modified separators exhibited long cycle life and improved rate capability. At 0.5 C after 325 cycles, a specific capacity of 815 mAh·g-1 and a low capacity fading rate of 0.051% were obtained. The superior properties, sustainable raw materials, and facile preparation process make nano-HA@CCPC a promising additive material for practical Li-S batteries.
Graphical Abstract
Keywords
conductive carbon framework, nano-hydroxyapatite, reactive interface, modified separator, redox reaction kinetics, lithium-sulfur batteries
Publication Date
2022-11-28
Online Available Date
2022-11-28
Revised Date
2022-11-04
Received Date
2022-09-21
Recommended Citation
Jia-Yu Wang, Xue-Feng Tong, Qi-Fan Peng, Yue-Peng Guan, Wei-Kun Wang, An-Bang Wang, Nai-Qiang Liu, Ya-Qin Huang.
Efficient Interface Enabled by Nano-Hydroxyapatite@Porous Carbon for Lithium-Sulfur Batteries[J]. Journal of Electrochemistry,
2022
,
28(11): 2219008.
DOI: 10.13208/j.electrochem.2219008
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss11/4
References
[1]
Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective[J]. J. Am. Chem. Soc., 2013, 135(4): 1167-1176.
doi: 10.1021/ja3091438
pmid: 23294028
[2]
Manthiram A, Fu Y, Chung S H, Zu C, Su Y S. Rechargeable lithium-sulfur batteries[J]. Chem. Rev., 2014, 114(23): 11751-11787.
doi: 10.1021/cr500062v
pmid: 25026475
[3] Sun Y M, Liu N A, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nat. Energy, 2016, 1(7): 16071.
[4] Marom R, Amalraj S F, Leifer N, Jacob D, Aurbach D. A review of advanced and practical lithium battery materials[J]. J. Mater. Chem., 2011, 21(27): 9938-9954.
[5] Girishkumar G, Mccloskey B, Luntz A C, Swanson S, Wilcke W. Lithium-air battery: promise and challenges[J]. J. Phys. Chem. Lett., 2010, 1(14): 2193-2203.
[6] Rosenman A, Markevich E, Salitra G, Aurbach D, Garsuch A, Chesneau F F. Review on Li-sulfur battery systems: an integral perspective[J]. Adv. Energy Mater., 2015, 5(16): 1500212.
[7] Peng H J, Huang J Q, Cheng X B, Zhang Q. Review on high-loading and high-energy lithium-sulfur batteries[J]. Adv. Energy Mater., 2017, 7(24): 1700260.
[8] Choi J W, Kim J K, Cheruvally G, Ahn J H, Ahn H J, Kim K W. Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes[J]. Electrochim. Acta, 2007, 52(5): 2075-2082.
[9] Yang Y, Zheng G Y, Cui Y. Nanostructured sulfur cathodes[J]. Chem. Soc. Rev., 2013, 44(24): 3018-3032.
[10] Zhang S S. Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions[J]. J. Power Sources, 2013, 231(2): 153-162.
[11] Liu M, Li Q, Qin X Y, Liang G M, Han W J, Zhou D, He Y B, Li B H, Kang F Y. Suppressing self-discharge and shuttle effect of lithium-sulfur batteries with V2O5-decorated carbon nanofiber interlayer[J]. Small, 2017, 13(12): 1602539.
[12] Chung S H, Manthiram A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries[J]. Adv. Mater., 2014, 26(43): 7352-7357.
[13] Huang J Q, Zhang Q, Peng H J, Liu X Y, Qian W Z, Wei F. Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries[J]. Energy Environ. Sci., 2013, 7(1): 347-353.
[14] Liu D, Zhang C, Zhou G, Lv W, Ling G, Zhi L, Yang Q H. Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect[J]. Adv. Sci., 2018, 5(1): 1700270.
[15] Wu H W, Ying H, Zhang W C, Sun X, Yang Y W, Wang L, Zong M. Lock of sulfur with carbon black and a three-dimensional graphene@carbon nanotubes coated separator for lithium-sulfur batteries[J]. J. Alloys Compd., 2017, 708: 743-750.
[16] Xiao D J, Lu C X, Chen C M, Yuan S X. CeO2-webbed carbon nanotubes as a highly efficient sulfur host for lithium-sulfur batteries[J]. Energy Storage Mater., 2018, 10: 216-222.
[17] Peng H J, Huang J Q, Zhao M Q, Zhang Q, Cheng X B, Liu X Y, Qian W Z, Wei F. Carbon: Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries[J]. Adv. Funct. Mater., 2014, 24(19): 2772-2781.
[18] Rui W, Chen S G, Deng J H, Xun H, Song Y J, Gan R Y, Wan X J, Wei Z D. Hierarchically porous nitrogen-doped carbon as cathode for lithium-sulfur batteries[J]. J. Energy Chem., 2018, 27: 1661-1667.
[19] Shao H Y, Wang W K, Zhang H, Wang A B, Chen X N, Huang Y Q. Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery[J]. J. Power Sources, 2018, 378: 537-545.
[20] Zhao X Y, Wang J Y, Sun X G, Wei K R, Wang W K, Wang A B, Huang Y Q, Guan Y P. Hierarchical porous carbon with Nano-MgO as efficient sulfur species micro-reactors for lithium-sulfur battery[J]. J. Electrochem. Soc., 2021, 168(4): 040506.
[21] Guan Y P, Liu X J, Akhtar N, Wang A B, Wang W K, Zhang H, Suntivich J, Huang Y Q. Cr2O3 nanoparticle decorated carbon nanofibers derived from solid leather wastes for high performance lithium-sulfur battery separator coating[J]. J. Electrochem. Soc., 2019, 166(8): A1671.
[22] Kong W B, Yan L J, Luo Y F, Wang D T, Jiang K L, Li Q Q, Fan S S, Wang J P. Li-S batteries: Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li&N dash; S batteries[J]. Adv. Funct. Mater., 2017, 27(18): 1606663.
[23]
Sun Z H, Zhang J Q, Yin L C, Hu G J, Fang R P, Cheng H M, Li F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nat. Commun., 2017, 8: 14627.
doi: 10.1038/ncomms14627
pmid: 28256504
[24] Zeng P, Huang L W, Zhang X L, Han Y M, Chen Y G. Inhibiting polysulfides diffusion of lithium-sulfur batteries using an acetylene black-CoS2 modified separator: mechanism research and performance improvement[J]. Appl. Surf. Sci., 2018, 427: 242-252.
[25] Xiang K X, Wen X Y, Hu J, Wang S C, Chen H. Rational fabrication of nitrogen and sulfur codoped carbon nanotubes/MoS2 for high-performance lithium-sulfur batteries[J]. ChemSusChem, 2019, 12(15): 3602-3614.
[26] Zhou T H, Lv W, Li J, Zhou G M, Zhao Y, Fan S X, Liu B L, Li B H, Kang F Y, Yang Q H. Twinborn TiO2-tin heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy Environ. Sci., 2017, 10(7): 1694-1703.
[27] Yuan H, Peng H J, Li B Q, Xie J, Kong L, Zhao M, Chen X, Huang J Q, Zhang Q. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries[J]. Adv. Energy Mater., 2019, 9(1): 1802768.
[28] Peng Y Y, Wen Z P, Liu C Y, Zeng J, Wang Y H, Zhao J B. Refining interfaces between electrolyte and both electrodes with carbon nanotube paper for high-loading lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2019, 11(7): 6986-6994.
[29] Liu N Q, Fei A, Wang W K, Shao H Y, Zhang H, Wang A B, Xu Z C, Huang Y Q. Nano-hydroxyapatite as an efficient polysulfide absorbent for high-performance Li-S batteries[J]. Electrochim. Acta, 2016, 215: 162-170.
[30] Garnero P. The role of collagen organization on the properties of bone[J]. Calcif. Tissue Int., 2015, 97(3): 229-240.
[31] Peng Q F, Yu F, Wang W K, Wang A B, Wang F, Huang Y Q. Ultralight polyethylenimine/porous carbon modified separator as an effective polysulfide-blocking barrier for lithium-sulfur battery[J]. Electrochim. Acta, 2019, 299: 749-755.
[32] Peng Q F, Fan Y, Huang B C, Huang Y Q. Carbon-containing bone hydroxyapatite obtained from tuna fish bone with high adsorption performance for congo red[J]. RSC Adv., 2017, 7(43): 26968-26973.
[33] Do V, Deepika, Kim M S, Kim M S, Lee K R, Cho W I. Carbon nitride phosphorus as an effective lithium polysulfide adsorbent for lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2019, 11(12): 11431-11441.
[34] Shao H Y, Ai F, Wang W K, Zhang H, Wang A B, Wang F, Huang Y Q. Crab shell-derived nitrogen-doped micro-/mesoporous carbon as an effective separator coating for high energy lithium-sulfur batteries[J]. J. Mater. Chem. A, 2017, 5(37): 19892-19900.
[35] Zhang B, Qin X, Li G R, Gao X P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy Environ. Sci., 2010, 3(10): 1531-1537.
[36] Yamada H, Nakamura H, Nakahara F, Moriguchi I, Kudo T. Electrochemical study of high electrochemical double layer capacitance of ordered porous carbons with both meso/macropores and micropores[J]. J. Phys. Chem. C, 2007, 111(1): 227-233.
[37] Peng H J, Zhang Z W, Huang J Q, Zhang G, Xie J, Xu W T, Shi J L, Chen X, Cheng X B, Zhang Q. A cooperative interface for highly efficient lithium-sulfur batteries[J]. Adv. Mater., 2016, 28(43): 9551-9558.
[38]
Zou Q L, Lu Y C. Solvent-dictated lithium sulfur redox reactions: an operando UV-vis spectroscopic study[J]. J. Phys. Chem. Lett., 2016, 7(8): 1518-1525.
doi: 10.1021/acs.jpclett.6b00228
pmid: 27050386
[39] Robinson L, Salma-Ancane K, Stipniece L, Meenan B J, Boyd A R. The deposition of strontium and zinc Co-substituted hydroxyapatite coatings[J]. J Mater. Sci. Mater. Med., 2017, 28(3): 51.
[40] Baradaran S, Nasiri-Tabrizi B, Shirazi F S, Saber-Samandari S, Shahtalebi S, Basirun W J. Wet chemistry approach to the preparation of tantalum-doped hydroxyapatite: dopant content effects[J]. Ceram. Int., 2018, 44(3): 2768-2781.
[41] Ma X L, Ning G Q, Qi C L, Xu C G, Gao J S. Phosphorus and nitrogen dual-doped few-layered porous graphene: A high-performance anode material for lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2014, 6(16): 14415-14422.
[42] Guo M Q, Huang J Q, Kong X Y, Peng H J, Shui H, Qian F Y, Zhu L, Zhu W C, Zhang Q. Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries[J]. New Carbon Mater., 2016, 31(3): 352-362.
[43] Wu H L, Mou J R, Zhou L, Zheng Q J, Jiang N, Lin D M. Cloud cap-like, hierarchically porous carbon derived from mushroom as an excellent host cathode for high performance lithium-sulfur batteries[J]. Electrochim. Acta, 2016, 212: 1021-1030.
[44] Do V, Deepika, Kim M S, Kim MS, Lee K R, Cho W I. Carbon nitride phosphorus as an effective lithium polysulfide adsorbent for lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2019, 11(12): 11431-11441.
[45] Yang J, Chen F, Li C, Bai T, Long B, Zhou X Y. A free-standing sulfur-doped microporous carbon interlayer derived from luffa sponge for high performance lithium-sulfur batteries[J]. J. Mater. Chem. A, 2016, 4(37): 14324-14333.
[46] Wu X H, Mirolo M, Vaz C A F, Novak P, El Kazzi M. Reactivity and potential profile across the electrochemical LiCoO2-Li3PS4 interface probed by operando X-ray photoelectron spectroscopy[J]. ACS Appl. Mater. Interfaces, 2021, 13(36): 42670-42681.
[47] Luo C, Zhu Y J, Borodin O, Gao T, Fan X L, Xu Y H, Xu K, Wang C S. Activation of oxygen-stabilized sulfur for Li and Na batteries[J]. Adv. Funct. Mater., 2016, 26(5): 745-752.
[48] Liu X, Huang J Q, Zhang Q, Mai L Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Adv. Mater., 2017, 29(20): 1601759.
[49] Mikhaylik Y V, Akridge J R. Polysulfide shuttle study in the Li/S battery system[J]. J. Electrochem. Soc., 2004, 151(11): A1969.
[50] Cheon S E, Ko K S, Cho J H, Kim S W, Chin E Y, Kim H T. Rechargeable lithium sulfur battery[J]. J. Electrochem. Soc., 2003, 150(6): A796.
[51] Huang J Q, Zhang Q, Zhang S M, Liu X F, Zhu W, Qian W Z, Wei F. Aligned sulfur-coated carbon nanotubes with a polyethylene glycol barrier at one end for use as a high efficiency sulfur cathode[J]. Carbon, 2013, 58: 99-106.
[52]
Yuan Z, Peng H J, Hou T Z, Huang J Q, Chen C M, Wang D W, Cheng X B, Wei F, Zhang Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Lett., 2016, 16(1): 519-527.
doi: 10.1021/acs.nanolett.5b04166
pmid: 26713782
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons