•  
  •  
 

Corresponding Author

Yu-Fang Chen(chenyufang@nudt.edu.cn);
Pei-Tao Xiao(xiaopt@nudt.edu.cn);
Chun-Man Zheng(zhengchunman@nudt.edu.cn)

Abstract

Aqueous zinc-ion batteries (AZIBs) are considered as one of the most promising next-generation electrochemical energy storage systems owing to their high-power density, environmental benign, intrinsic safety, and the low cost of the abundant zinc resources. However, their further development is still plagued by the inferior electrochemical performance of cathode materials. Though extensive research has been conducted to investigate various cathode materials (including manganese oxides, vanadium oxides, Prussian blues analogy, and organic materials), design of high-performance cathodes with satisfying capacity and long-term cycling stability still faces great challenges. Oxygen-free vanadium-based compounds, owing to their better conductivity, larger interlayer spacing, lower ion diffusion barrier and higher theoretical specific capacity than those of vanadium oxides, have gained increasing attention recently. In this review, we summarize the recent development about the emerging oxygen-free vanadium-based compounds in AZIBs, emphasizing the methods to design electrode materials with desired structures, effective strategies to improve their electrochemical performance, and the fundamental electrochemical mechanisms. Finally, the current challenges and outlooks of oxygen-free vanadium-based compounds are proposed, providing a novel perspective and useful guidance for the design of high-performance vanadium-based cathode materials for AZIBs.

Graphical Abstract

Keywords

zinc-ion batteries, oxygen-free vanadium-based compound, energy storage mechanisms, electrochemical performance

Publication Date

2022-11-28

Online Available Date

2022-10-19

Revised Date

2022-09-30

Received Date

2022-09-06

References

[1] Park S K, Dose W M, Boruah B D, De Volder M. In situ and operando analyses of reaction mechanisms in vanadium oxides for Li-, Na-, Zn-, and Mg- ions batteries[J]. Adv. Mater. Technol., 2021, 7(1): 2100799.

[2] Yi T F, Qiu L Y, Qu J P, Liu H Y, Zhang J H, Zhu Y R. Towards high-performance cathodes: Design and energy storage mechanism of vanadium oxides-based materials for aqueous Zn-ion batteries[J]. Coordin. Chem. Rev., 2021, 446: 214124.

[3] Li X R, Cheng H Y, Hu H, Pan K M, Yuan T T, Xia W T. Recent advances of vanadium-based cathode materials for zinc-ion batteries[J]. Chinese Chem. Lett., 2021, 32(12): 3753-3761.

[4] Zhou T, Han Q, Xie L L, Yang X L, Zhu L M, Cao X Y. Recent developments and challenges of vanadium oxides (VxOy) cathodes for aqueous zinc-ion batteries[J]. Chem. Rec., 2022, 22(4): e202100275.

[5] Du M, Miao Z Y, Li H Z, Sang Y H, Liu H, Wang S H. Strategies of structural and defect engineering for high-performance rechargeable aqueous zinc-ion batteries[J]. J. Mater. Chem. A, 2021, 9(35): 19245-19281.

[6] Wang H Y, Ye W Q, Yang Y, Zhong Y J, Hu Y. Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives[J]. Nano Energy, 2021, 85: 105942.

[7] Wang X, Zhang Z C Y, Xi B J, Chen W H, Jia Y X, Feng J K, Xiong S L. Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries[J]. ACS Nano, 2021, 15(6): 9244-9272.
doi: 10.1021/acsnano.1c01389 pmid: 34081440

[8] Cai K X, Luo S H, Feng J, Wang J C, Zhan Y, Wang Q, Zhang Y H, Liu X. Recent advances on spinel zinc manganate cathode materials for zinc-ion batteries[J]. Chem. Rec., 2022, 22(1): e202100169.

[9] Zhang N, Chen X Y, Yu M, Niu Z Q, Cheng F Y, Chen J. Materials chemistry for rechargeable zinc-ion batteries[J]. Chem. Soc. Rev., 2020, 49(13): 4203-4219.
doi: 10.1039/c9cs00349e pmid: 32478772

[10] Liu S, Kang L, Kim J M, Chun Y T, Zhang J, Jun S C. Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries[J]. Adv. Energy Mater., 2020, 10(25): 2000477.

[11] Mathew V, Sambandam B, Kim S, Kim S, Park S, Lee S, Alfaruqi M H, Soundharrajan V, Islam S, Putro D Y, Hwang J Y, Sun Y K, Kim J. Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries: A focused view on performance, mechanism, and developments[J]. ACS Energy Lett., 2020, 5(7): 2376-2400.

[12] Wan F, Niu Z Q. Design strategies for vanadium-based aqueous zinc-ion batteries[J]. Angew. Chem. Int. Ed., 2019, 58(46): 16358-16367.
doi: 10.1002/anie.201903941 pmid: 31050086

[13] Li Y, Zhang D H, Huang S Z, Yang H Y. Guest-species-incorporation in manganese/vanadium-based oxides: Towards high performance aqueous zinc-ion batteries[J]. Nano Energy, 2021, 85: 105969.

[14] Li H F, Ma L T, Han C P, Wang Z F, Liu Z X, Tang Z J, Zhi C Y. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives[J]. Nano Energy, 2019, 62: 550-587.

[15] Xu W W, Wang Y. Recent progress on zinc-ion rechargeable batteries[J]. Nanomicro. Lett., 2019, 11(1): 90.

[16] Li C, Chen Y F, Zhang J, Jiang H L, Zhu Y H, Jia J H, Bai S X, Fang G Z, Zheng C M. MOF-derived porous carbon inlaid with MnO2 nanoparticles as stable aqueous Zn-ion battery cathodes[J]. Dalton Trans., 2021, 50(47): 17723-17733.

[17] Li C, Zheng C M, Jiang H L, Bai S X, Jia J H. Conductive flower-like Ni-PTA-Mn as cathode for aqueous zinc-ion batteries[J]. J. Alloy. Compd., 2021, 882: 160587.

[18] Ding J W, Gao H G, Ji D F, Zhao K, Wang S W, Cheng F Y. Vanadium-based cathodes for aqueous zinc-ion batteries: From crystal structures, diffusion channels to storage mechanisms[J]. J. Mater. Chem. A, 2021, 9(9): 5258-5275.

[19] He P, Yan M Y, Zhang G B, Sun R M, Chen L N, An Q Y, Mai L Q. Layered VS2 nanosheet-based aqueous Zn ion battery cathode[J]. Adv. Energy Mater., 2017, 7(11): 1601920.

[20] Yu D X, Wei Z X, Zhang X Y, Zeng Y, Wang C Z, Chen G, Shen Z X, Du F. Boosting Zn2+ and NH4+ storage in aqueous media via in-situ electrochemical induced VS2/VOx heterostructures[J]. Adv. Funct. Mater., 2020, 31(11): 2008743.

[21] Yang H L, Ning P G, Wen J W, Xie Y B, Su C L, Li Y P, Cao H B. Structure control in VNxOy by hydrogen bond association extraction for enhanced zinc ion storage[J]. Electrochimi. Acta, 2021, 389: 138722.

[22] Zhu Q C, Xiao Q, Zhang B W, Yan Z C, Liu X, Chen S, Ren Z F, Yu Y. VS4 with a chain crystal structure used as an intercalation cathode for aqueous Zn-ion batteries[J]. J. Mater. Chem. A, 2020, 8(21): 10761-10766.

[23] Bai Y C, Zhang H, Xiang B, Yao Q, Dou L, Dong G Y. Engineering porous structure in bi-component-active ZnO quantum dots anchored vanadium nitride boosts reaction kinetics for zinc storage[J]. Nano Energy, 2021, 89: 106386.

[24] Narayanasamy M, Hu L T, Kirubasankar B, Liu Z T, Angaiah S, Yan C. Nanohybrid engineering of the vertically confined marigold structure of rGO-VSe2 as an advanced cathode material for aqueous zinc-ion battery[J]. J. Alloys and Compd., 2021, 882: 160704.

[25] Jiang W Y, Shi H Z, Shen M, Tang R, Tang Z F, Wang J Q. Molten salt thermal treatment synthesis of S-doped V2CTx and its performance as a cathode in aqueous Zn-ion batteries[J]. ACS Appl. Mater. Interfaces, 2022, 14(12): 14482-14491.

[26] Jiao T P, Yang Q, Wu S L, Wang Z F, Chen D, Shen D, Liu B, Cheng J Y, Li H F, Ma L T, Zhi C Y, Zhang W J. Binder-free hierarchical VS2 electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading[J]. J. Mater. Chem. A, 2019, 7(27): 16330-16338.

[27] Tan Y, Li S W, Zhao X D, Wang Y, Shen Q Y, Qu X H, Liu Y C, Jiao L F. Unexpected role of the interlayer “dead Zn2+” in strengthening the nanostructures of VS2 cathodes for high-performance aqueous Zn-ion storage[J]. Adv. Energy Mater., 2022, 12(19): 2104001.

[28] Dong L B, Yang W, Yang W, Li Y, Wu W J, Wang G X. Multivalent metal ion hybrid capacitors: A review with a focus on zinc-ion hybrid capacitors[J]. J. Mater. Chem. A, 2019, 7(23): 13810-13832.

[29] Yu P, Zeng Y X, Zhang H Z, Yu M H, Tong Y X, Lu X H. Flexible Zn-ion batteries: Recent progresses and challenges[J]. Small, 2019, 15(7): 1804760.

[30] Wang X, Li Y G, Wang S, Zhou F, Das P, Sun C L, Zheng S H, Wu Z S. 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-ion batteries with unprecedented capacity and ultrahigh rate capability[J]. Adv. Energy Mater., 2020, 10(22): 2000081.

[31] Yan M Y, He P, Chen Y, Wang S Y, Wei Q L, Zhao K N, Xu X, An Q Y, Shuang Y, Shao Y Y, Mueller K T, Mai L Q, Liu J, Yang J H. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries[J]. Adv. Mater., 2018, 30(1), 1703725.

[32] Dai X, Wan F, Zhang L L, Cao H M, Niu Z Q. Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance[J]. Energy Storage Mater., 2019, 17: 143-150.

[33] Pang Q, Sun C L, Yu Y H, Zhao K N, Zhang Z Y, Voyles P M, Chen G, Wei Y J, Wang X D. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity[J]. Adv. Energy Mater., 2018, 8(19): 1800144.

[34] Hu P, Zhu T, Wang X P, Zhou X F, Wei X J, Yao X H, Luo W, Shi C W, Owusu K A, Zhou L, Mai L Q. Aqueous Zn//Zn(CF3SO3)2//Na3V2(PO4)3 batteries with simultaneous Zn2+/Na+ intercalation/de-intercalation[J]. Nano Energy, 2019, 58: 492-498.

[35] Li C, Zheng C M, Jiang H L, Bai S X, Jia J H. Synergistic effect of structural stability and oxygen vacancies enabling long-life aqueous zinc-ion battery[J]. Mater Lett., 2021, 302: 130373.

[36] Liu J P, Peng W C, Li Y, Zhang F B, Fan X B. A VS2@N-doped carbon hybrid with strong interfacial interaction for high-performance rechargeable aqueous Zn-ion batteries[J]. J. Mater. Chem. C, 2021, 9(19): 6308-6315.

[37] Gao P, Pan Z K, Ru Q, Zhang J, Zheng M H, Zhao X, Ling F C C, Wei L. Synergetic V2O5·3H2O/metallic VS2 nanocomposites endow a long life and high rate capability to aqueous zinc-ion batteries[J]. Energy Fuel., 2022, 36(6): 3319-3327.

[38] Yang M Y, Wang Z F, Ben H Y, Zhao M X, Luo J X, Chen D Z, Lu Z G, Wang L, Liu C. Boosting the zinc ion storage capacity and cycling stability of interlayer-expanded vanadium disulfide through in-situ electrochemical oxidation strategy[J]. J. Colloid. Interface Sci., 2022, 607: 68-75.

[39] Cao Z Y, Chu H, Zhang H, Ge Y C, Clemente R, Dong P, Wang L P, Shen J F, Ye M X, Ajayan P M. An in situ electrochemical oxidation strategy for formation of nanogrid-shaped V3O7·H2O with enhanced zinc storage properties[J]. J. Mater. Chem. A, 2019, 7(44): 25262-25267.

[40] Wang J J, Wang J G, Liu H Y, You Z Y, Wei C G, Kang F Y. Electrochemical activation of commercial MnO microsized particles for high-performance aqueous zinc-ion batteries[J]. J. Power Sources, 2019, 438: 226951.

[41] Ding J W, Gao H G, Zhao K, Zheng H Y, Zhang H, Han L F, Wang S W, Wu S D, Fang S M, Cheng F Y. In-situ electrochemical conversion of vanadium dioxide for enhanced zinc-ion storage with large voltage range[J]. J. Power Sources, 2021, 487: 229369.

[42] Ding J W, Du Z G, Li B, Wang L Z, Wang S W, Gong Y J, Yang S B. Unlocking the potential of disordered rocksalts for aqueous zinc-ion batteries[J]. Adv. Mater., 2019, 31(44): 1904369.

[43] Yin B S, Zhang S W, Xiong T, Shi W, Ke K, Lee W S V, Xue J M, Wang Z B. Engineering sulphur vacancy in VS2 as high performing zinc-ion batteries with high cyclic stability[J]. New J Chem., 2020, 44(37): 15951-15957.

[44] Qin H G, Yang Z H, Chen L L, Chen X, Wang L M. A high-rate aqueous rechargeable zinc ion battery based on the VS4@rGO nanocomposite[J]. J. Mater. Chem. A, 2018, 6(46): 23757-23765.

[45] Liu S N, Chen X X, Zhang Q, Zhou J, Cai Z Y, Pan A Q. Fabrication of an inexpensive hydrophilic bridge on a carbon substrate and loading vanadium sulfides for flexible aqueous zinc-ion batteries[J]. ACS Appl. Mater. Inter., 2019, 11(40): 36676-36684.

[46] Gao S Z, Ju P, Liu Z Q, Zhai L, Liu W B, Zhang X Y, Zhou Y L, Dong C F, Jiang F Y, Sun J C. Electrochemically induced phase transition in a nanoflower vanadium tetrasulfide cathode for high-performance zinc-ion batteries[J]. J. Energy Chem., 2022, 69: 356-362.

[47] Samanta P, Ghosh S, Jang W, Yang C M, Murmu N C, Kuila T. A reversible anodizing strategy in a hybrid electrolyte Zn-ion battery through structural modification of a vanadium sulfide cathode[J]. ACS Appl. Energ. Mater., 2021, 4(10): 10656-10667.

[48] Wang L L, Wu Z X, Jiang M J H, Lu J Y, Huang Q H, Zhang Y, Fu L J, Wu M, Wu Y P. Layered VSe2: A promising host for fast zinc storage and its working mechanism[J]. J. Mater. Chem. A, 2020, 8(18): 9313-9321.

[49] Wu Z Y, Lu C J, Wang Y N, Zhang L, Jiang L, Tian W C, Cai C L, Gu Q F, Sun Z M, Hu L F. Ultrathin VSe2 nanosheets with fast ion diffusion and robust structural stability for rechargeable zinc-ion battery cathode[J]. Small, 2020, 16(35): 2000698.

[50] Bai Y C, Zhang H, Xiang B, Liang X Y, Hao J Y, Zhu C, Yan L J. Selenium defect boosted electrochemical performance of binder-free VSe2 nanosheets for aqueous zinc-ion batteries[J]. ACS Appl. Mater. Interfaces, 2021, 13(19): 23230-23238.

[51] Cai S N, Wu Y K, Chen H, Ma Y D, Fan T X, Xu M W, Bao S J. Why does the capacity of vanadium selenide based aqueous zinc ion batteries continue to increase during long cycles?[J]. J. Colloid. Interface Sci., 2022, 615: 30-37.

[52] Fechler N, Tiruye G A, Marcilla R, Antonietti M. Vanadium nitride@N-doped carbon nanocomposites: Tuning of pore structure and particle size through salt templating and its influence on supercapacitance in ionic liquid media[J]. RSC Adv., 2014, 4(51): 26981-26989.

[53] Yuan J, Hu X, Chen J X, Liu Y J, Huang T Z, Wen Z H. In situ formation of vanadium nitride quantum dots on N-doped carbon hollow spheres for superior lithium and sodium storage[J]. J. Mater. Chem. A, 2019, 7(15): 9289-9296.
doi: 10.1039/c8ta12512k

[54] Ou L N, Liu Z X, Zhou Y F, Ou H H, Zhu J, Cao X X, Fang G Z, Zhou J, Liang S Q. Pseudocapacitance-dominated zinc storage enabled by nitrogen-doped carbon stabilized amorphous vanadyl phosphate[J]. Chem. Eng. J., 2021, 426: 131868.

[55] Chen D, Lu M J, Wang B R, Chai R Q, Li L, Cai D, Yang H, Liu B K, Zhang Y P, Han W. Uncover the mystery of high-performance aqueous zinc-ion batteries constructed by oxygen-doped vanadium nitride cathode: Cationic conversion reaction works[J]. Energy Storage Mater., 2021, 35: 679-686.

[56] Peng Y Y, Yu M M, Zhao L, Ji X W, He T Q, Liu Y, Wang Q, Ran F. 3D layered nanostructure of vanadium nitrides quantum dots@graphene anode materials via in-situ redox reaction strategy[J]. Chem. Eng. J., 2021, 417: 129267.

[57] Niu Y, Xu W Q, Ma Y J, Gao Y, Li X L, Li L D, Zhi L J. Layer-by-layer stacked vanadium nitride nanocrystals/N-doped carbon hybrid nanosheets toward high-performance aqueous zinc-ion batteries[J]. Nanoscale, 2022, 14(20): 7607-7612.
doi: 10.1039/d2nr00983h pmid: 35543557

[58] Fang G Z, Liang S Q, Chen Z X, Cui P X, Zheng X S, Pan A Q, Lu B G, Lu X H, Zhou J. Simultaneous cationic and anionic redox reactions mechanism enabling high-rate long-life aqueous zinc-ion battery[J]. Adv. Funct. Mater., 2019, 29(44): 1905267.

[59] Du W Y, Miao L, Song Z Y, Zheng X W, Lv Y K, Zhu D Z, Gan L H, Liu M X. Kinetics-driven design of 3D VN/Mxene composite structure for superior zinc storage and charge transfer[J]. J. Power Sources, 2022, 536: 231512.

[60] Park J S, Wang S E, Jung D S, Lee J K, Kang Y C. Nano-confined vanadium nitride in 3D porous reduced graphene oxide microspheres as high-capacity cathode for aqueous zinc-ion batteries[J]. Chem. Eng. J., 2022, 446: 137266.

[61] Chen H Z, Yang Z H, Wu J, Rong Y, Deng L. Industrial VN@reduced graphene oxide cathode for aqueous zinc ion batteries with high rate capability and long cycle stability[J]. J. Power Sources, 2021, 507: 230286.

[62] Li X L, Ma L T, Zhao Y W, Yang Q, Wang D H, Huang Z D, Liang G J, Mo F N, Liu Z X, Zhi C Y. Hydrated hybrid vanadium oxide nanowires as the superior cathode for aqueous Zn battery[J]. Mater. Today Energy, 2019, 14: 100361.

[63] Javed M S, Lei H, Wang Z L, Liu B T, Cai X, Mai W J. 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries[J]. Nano Energy, 2020, 70: 104573.

[64] Yao Z G, Wu Q P, Chen K Y, Liu J J, Li C L. Shallow-layer pillaring of a conductive polymer in monolithic grains to drive superior zinc storage via a cascading effect[J]. Energy Environ. Sci., 2020, 13(9): 3149-3163.

[65] Li X L, Li M, Yang Q, Liang G J, Huang Z D, Ma L T, Wang D H, Mo F N, Dong B B, Huang Q, Zhi C Y. In situ electrochemical synthesis of mxenes without acid/alkali usage in/for an aqueous zinc ion battery[J]. Adv. Energy Mater., 2020, 10(36): 2001791.

[66] Venkatkarthick R, Rodthongkum N, Zhang X Y, Wang S M, Pattananuwat P, Zhao Y S, Liu R P, Qin J Q. Vanadium-based oxide on two-dimensional vanadium carbide mxene (V2Ox@V2CTx) as cathode for rechargeable aqueous zinc-ion batteries[J]. ACS Appl. Energy Mater., 2020, 3(5): 4677-4689.

[67] Chen J, Xiao B Q, Hu C F, Chen H D, Huang J J, Yan D, Peng S L. Construction strategy of VO2@V2C 1D/2D heterostructure and improvement of zinc-ion diffusion ability in VO2(B)[J]. ACS Appl. Mater. Inter., 2022, 14(25): 28760-28768.

[68] Sha D W, Lu C J, He W, Ding J X, Zhang H, Bao Z H, Cao X, Fan J C, Dou Y, Pan L, Sun Z M. Surface selenization strategy for V2CTx Mxene toward superior Zn-ion storage[J]. ACS Nano, 2022, 16(2): 2711-2720.

[69] Wang J, Wang L, Yang S B. VN Quantum dots anchored uniformly onto nitrogen-doped graphene as efficient electrocatalysts for oxygen reduction reaction[J]. Nano, 2018, 13(4): 1850041.

[70] Pu X M, Song T B, Tang L B, Tao Y Y, Cao T, Xu Q J, Liu H M, Wang Y G, Xia Y Y. Rose-like vanadium disulfide coated by hydrophilic hydroxyvanadium oxide with improved electrochemical performance as cathode material for aqueous zinc-ion batteries[J]. J. Power Sour-ces, 2019, 437: 226917.

[71] Ding J W, Gao H G, Liu W Q, Wang S W, Wu S D, Fang S M, Cheng F Y. Operando constructing vanadium tetrasulfide-based heterostructures enabled by extrinsic adsorbed oxygen for enhanced zinc ion storage[J]. J. Mater. Chem. A, 2021, 9(18): 11433-11441.

[72] Liu J Y, Long J W, Shen Z H, Jin X, Han T L, Si T, Zhang H G. A self-healing flexible quasi-solid zinc-ion battery using all-in-one electrodes[J]. Adv. Sci., 2021, 8(8): 2004689.

[73] Xu J, Liu Y B, Chen P L, Wang A, Huang K J, Fang L X, Wu X. Interlayer-expanded VS2 nanosheet: Fast ion transport, dynamic mechanism and application in Zn2+ and Mg2+/Li+ hybrid batteries systems[J]. J. Colloid. Interface Sci., 2022, 620: 119-126.

[74] Rong Y, Chen H Z, Wu J, Yang Z H, Deng L, Fu Z M. Granular vanadium nitride (VN) cathode for high-capacity and stable zinc-ion batteries[J]. Ind. Eng. Chem. Res., 2021, 60(24): 8649-8658.

[75] Su Q S, Rong Y, Chen H Z, Wu J, Yang Z H, Deng L, Fu Z M. Carbon-doped vanadium nitride used as a cathode of high-performance aqueous zinc ion batteries[J]. Ind. Eng. Chem. Res., 2021, 60(33): 12155-12165.

[76] Chen H Z, Yang Z H, Wu J. Vanadium nitride@nitrogen-doped graphene as zinc ion battery cathode with high rate capability and long cycle stability[J]. Ind. Eng. Chem. Res., 2022, 61(8): 2955-2962.

[77] Narayanasamy M, Kirubasankar B, Shi M J, Velayutham S, Wang B, Angaiah S, Yan C. Morphology restrained growth of V2O5 by the oxidation of V-Mxenes as a fast diffusion controlled cathode material for aqueous zinc ion batteries[J]. Chem. Commun., 2020, 56(47): 6412-6415.

[78] Rastgoo-Deylami M, Esfandiar A. High energy aqueous rechargeable nickel-zinc battery employing hierarchical NiV-LDH nanosheet-built microspheres on reduced graphene oxide[J]. ACS Appl. Energy Mater., 2021, 4(3): 2377-2387.

[79] Liu Y, Jiang Y, Hu Z, Peng J, Lai W H, Wu D L, Zuo S W, Zhang J, Chen B, Dai Z W, Yang Y G, Huang Y, Zhang W, Zhao W, Zhang W, Wang L, Chou S L. In-situ electrochemically activated surface vanadium valence in V2C mxene to achieve high capacity and superior rate performance for Zn-ion batteries[J]. Adv. Funct. Mater., 2020, 31(8): 2008033.

[80] Zhu X D, Cao Z Y, Wang W J, Li H J, Dong J C, Gao S P, Xu D X, Li L, Shen J F, Ye M X. Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CTx Mxene[J]. ACS Nano, 2021, 15(2): 2971-2983.

[81] Karapidakis E, Vernardou D. Progress on V2O5 cathodes for multivalent aqueous batteries[J]. Mater., 2021, 14(9), 2310.

[82] Lewis C E M, Fernando J F S, Siriwardena D P, Firestein K L, Zhang C, von Treifeldt J E, Golberg D V. Vanadium-containing layered materials as high-performance cathodes for aqueous zinc-ion batteries[J]. Adv. Mater. Technol., 2021, 7(4): 2100505.

[83] Liu Y, Wu X. Review of vanadium-based electrode materials for rechargeable aqueous zinc ion batteries[J]. J. Energy Chem., 2021, 56: 223-237.

[84] Shi Y C, Chen Y, Shi L, Wang K, Wang B, Li L, Ma Y M, Li Y H, Sun Z H, Ali W, Ding S J. An overview and future perspectives of rechargeable zinc batteries[J]. Small, 2020, 16(23): 2000730.

[85] Zhang W W, Zuo C L, Tang C, Tang W, Lan B X, Fu X D, Dong S J, Luo P. The current developments and perspectives of V2O5 as cathode for rechargeable aqueous zinc-ion batteries[J]. Energy Technol., 2020, 9(2): 2000789.

[86] Sui D, Wu M N, Shi K Y, Li C L, Lang J W, Yang Y L, Zhang X Y, Yan X B, Chen Y S. Recent progress of cathode materials for aqueous zinc-ion capacitors: Carbon-based materials and beyond[J]. Carbon, 2021, 185: 126-151.

[87] Jia X X, Liu C F, Neale Z G, Yang J H, Cao G Z. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry[J]. Chem. Rev., 2020, 120(15): 7795-7866.
doi: 10.1021/acs.chemrev.9b00628 pmid: 32786670

[88] Liu Z X, Sun H M, Qin L P, Cao X X, Zhou J, Pan A Q, Fang G Z, Liang S Q. Interlayer doping in layered vanadium oxides for low-cost energy storage: Sodium-ion batteries and aqueous zinc-ion batteries[J]. ChemNano-Mat, 2020, 6(11): 1553-1566.

[89] Xu X M, Xiong F Y, Meng J S, Wang X P, Niu C J, An Q Y, Mai L Q. Vanadium-based nanomaterials: A pro-mising family for emerging metal-ion batteries[J]. Adv. Funct. Mater., 2020, 30(10): 1904398.

[90] Fu Q, Wang J Q, Sarapulova A, Zhu L H, Missyul A, Welter E, Luo X L, Ding Z M, Knapp M, Ehrenberg H, Dsoke S. Electrochemical performance and reaction mechanism investigation of V2O5 positive electrode material for aqueous rechargeable zinc batteries[J]. J. Mater. Chem. A, 2021, 9(31): 16776-16786.

[91] Fan L, Ru Y, Xue H G, Pang H, Xu Q. Vanadium-based materials as positive electrode for aqueous zinc-ion batteries[J]. Adv. Sustain. Syst., 2020, 4(12): 2000178.

[92] Bensalah N, De Luna Y. Recent progress in layered manganese and vanadium oxide cathodes for Zn-ion batteries[J]. Energy Technol., 2021, 9(5): 2100011.

[93] Zhao J, Ren H, Liang Q H, Yuan D, Xi S B, Wu C, Manalastas W, Ma J M, Fang W, Zheng Y, Du C F, Srinivasan M, Yan Q Y. High-performance flexible quasi-solid-state zinc-ion batteries with layer-expanded vanadium oxide cathode and zinc/stainless steel mesh composite anode[J]. Nano Energy, 2019, 62: 94-102.
doi: 10.1016/j.nanoen.2019.05.010

[94] Wang X W, Wang L Q, Zhang B, Feng J M, Zhang J F, Ou X, Hou F, Liang J. A flexible carbon nanotube@V2O5 film as a high-capacity and durable cathode for zinc ion batteries[J]. J. Energy Chem., 2021, 59: 126-133.

[95] Alfaruqi M H, Mathew V, Song J J, Kim S, Islam S, Pham D T, Jo J, Kim S, Baboo J P, Xiu Z, Lee K S, Sun Y K, Kim J. Electrochemical zinc intercalation in lithium vanadium oxide: A high-capacity zinc-ion battery cathode[J]. Chem. Mater., 2017, 29(4): 1684-1694.

[96] He P, Yan M Y, Liao X B, Luo Y Z, Mai L Q, Nan C W. Reversible V3+/V5+ double redox in lithium vanadium oxide cathode for zinc storage[J]. Energy Storage Mater., 2020, 29: 113-120.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.