Abstract
Lithium layered oxide LiNi0.6Co0.2Mn0.2O2 (NCM622) is one of the most promising cathode materials in high-energy lithium-ion batteries for electric vehicles. However, one drawback for NCM622 is that its initial coulombic efficiency (ICE) is only about 87%, which is at least 6% lower than that of LiCoO2 or LiFePO4. In this work, we investigated the effects of surface chemical residues (e.g., LiOH and Li2CO3) and Li/Ni cation disorder resulted during the sintering on the ICE. We found that the ICE of the as-prepared samples could be boosted from 80.80% to 86.68% as the sintering temperatures were increased from 825 to 900 oC. The corresponding Li/Ni cation disorder and surface chemical residues were also reduced with the increasing sintering temperatures. Furthermore, the ICE of the sample sintered at 825 oC could be enhanced by 3.57% after washing with HNO3 solution to remove the surface residues despite the Li/Ni cation disorder being increased. These results demonstrate that minimizing the amount of surface residuals and the degree of Li/Ni cation disorder through an appropriate sintering process and post-treatment technology is critical to achieve a high ICE and improve the electrochemical performances of NCM622.
Graphical Abstract
Keywords
lithium layered oxide cathode, initial coulombic efficiency, surface chemical residues, Li/Ni cation disorder
Publication Date
2022-11-28
Online Available Date
2022-10-31
Revised Date
2022-09-27
Received Date
2022-08-21
Recommended Citation
Jin-Li Liu, Han-Feng Wu, Zhi-Bei Liu, Ying-Qiang Wu, Li Wang, Feng-Li Bei, Xiang-Ming He.
Insight into the Effects of Cation Disorder and Surface Chemical Residues on the Initial Coulombic Efficiency of Layered Oxide Cathode[J]. Journal of Electrochemistry,
2022
,
28(11): 2219001.
DOI: 10.13208/j.electrochem.2219001
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss11/8
References
[1] Wu Y Q, Xie L Q, Ming H, Guo Y J, Hwang J Y, Wang W X, He X M, Wang L M, Alshareef H N, Sun Y K, Ming J. An empirical model for the design of batteries with high energy density[J]. ACS Energy Lett., 2020, 5(3): 807-816.
[2] Zhang B, Wang L, Zhang H, Xu H, He X M. Revelation of the transition-metal doping mechanism in lithium manganese phosphate for high performance of lithium-ion batteries[J]. Battery Energy, 2022, 1(4): 20220020.
[3] Xue H J, Wu Y Q, Zou Y G, Shen Y B, Liu G, Li Q, Yin D M, Wang L M, Ming J. Unraveling metal oxide role in exfoliating graphite: new strategy to construct high-performance graphene-modified SiOx-based anode for lithium-ion batteries[J]. Adv. Funct. Mater., 2020, 30(21): 1910657.
[4] Wu Y Q, Ming H, Li M L, Zhang J L, Wahyudi W, Xie L Q, He X M, Wang J, Wu Y P, Ming J. New organic complex for lithium layered oxide modification: ultrathin coating, high-voltage, and safety performances[J]. ACS Energy Lett., 2019, 4(3): 656-665.
[5] Zhang B, He Y F, Gao H Q, Wang X D, Liu J L, Xu H, Wang L, He X M. Unraveling the doping mechanisms in lithium iron phosphate[J]. Energy Mater., 2022, 2: 200013.
[6]
Li W D, Dolocan A, Oh P, Celio H, Park S, Cho J, Manthiram A. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries[J]. Nat. Commun., 2017, 8: 14589.
doi: 10.1038/ncomms14589
pmid: 28443608
[7] Ryu H H, Park K J, Yoon C S, Sun Y K. Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6≤ x ≤ 0.95) cathodes for high-energy-density lithium-Iion batteries: bulk or surface degradation?[J]. Chem. Mater., 2018, 30(3): 1155-1163.
[8] Wu Y Q, Xie L Q, He X M, Zhuo L H, Wang L M, Ming J. Electrochemical activation, voltage decay and hysteresis of Li-rich layered cathode probed by various cobalt content[J]. Electrochim. Acta, 2018, 265: 115-120.
[9] Fan L, Wei S Y, Li S Y, Li Q, Lu Y Y. Recent progress of the solid-state electrolytes for high-energy metal-based batteries[J]. Adv. Energy Mater., 2018, 8(11): 1702657.
[10] Wu Y Q, Ming J, Zhuo L H, Yu Y C, Zhao F Y. Simultaneous surface coating and chemical activation of the Li-rich solid solution lithium rechargeable cathode and its improved performance[J]. Electrochim. Acta, 2013, 113: 54-62.
[11] Jun D W, Yoon C S, Kim U H, Sun Y K. High-energy density core-shell structured Li[Ni0.95Co0.025Mn0.025]O2 cathode for lithium-ion batteries[J]. Chem. Mater., 2017, 29(12): 5048-5052.
[12] Lee W, Muhammad S, Kim T, Kim H, Lee E, Jeong M, Son S, Ryou J H, Yoon W S. New insight into Ni-rich layered structure for next-generation Li rechargeable batteries[J]. Adv. Energy Mater., 2018, 8(4): 1701788.
[13] Liu W, Li X F, Xiong D B, Hao Y C, Li J W, Kou H R, Yan B, Li D J, Lu S G, Koo A, Adair K, Sun X L. Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2[J]. Nano Energy, 2018, 44: 111-120.
[14] Lee S W, Kim M S, Jeong J H, Kim D H, Chung K Y, Roh K C, Kim K B. Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted sol-gel method: improved thermal stability and high-voltage performance[J]. J. Power Sources, 2017, 360: 206-214.
[15] Chen Z Q, Wang J, Huang J X, Fu T, Sun G Y, Lai S B, Zhou R, Li K, Zhao J B. The high-temperature and high-humidity storage behaviors and electrochemical degradation mechanism of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries[J]. J. Power Sources, 2017, 363: 168-176.
[16] Liu S Y, Dang Z Y, Liu D, Zhang C C, Huang T, Yu A S. Comparative studies of zirconium doping and coating on LiNi0.6Co0.2Mn0.2O2 cathode material at elevated temperatures[J]. J. Power Sources, 2018, 396: 288-296.
[17] Yuan J, Wen J W, Zhang J B, Chen D M, Zhang D W. Influence of calcination atmosphere on structure and electrochemical behavior of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries[J]. Electrochim. Acta, 2017, 230: 116-122.
[18] Choi J, Manthiram A. Investigation of the irreversible capacity loss in the layered LiNi1/3Mn1/3Co1/3O2 cathodes[J]. Electrochem. Solid-State Lett., 2005, 8(8): C102-C105.
[19] Hu Q, Wu Y Z, Ren D S, Liao J Y, Song Y Z, Liang H M, Wang A P, He Y F, Wang L, Chen Z H, He X M. Revisiting the initial irreversible capacity loss of LiNi0.6Co0.2-Mn0.2O2 cathode material batteries[J]. Energy Stor. Mater., 2022, 50: 373-379.
[20] Hong C Y, Leng Q Y, Zhu J P, Zheng S Y, He H J, Li Y X, Liu R, Wan J J, Yang Y. Revealing the correlation between structural evolution and Li+ diffusion kinetics of nickel-rich cathode materials in Li-ion batteries[J]. J. Mater. Chem. A, 2020, 8(17): 8540-8547.
[21]
Zhou H, Xin F X, Pei B, Whittingham M S. What limits the capacity of layered oxide cathodes in lithium batteries?[J]. ACS Energy Lett., 2019, 4(8): 1902-1906.
doi: 10.1021/acsenergylett.9b01236
[22] Zhao E Y, Fang L C, Chen M M, Chen D F, Huang Q Z, Hu Z B, Yan Q B, Wu M M, Xiao X L. New insight into Li/Ni disorder in layered cathode materials for lithium ion batteries: a joint study of neutron diffraction, electrochemical kinetic analysis and first-principles calculations[J]. J. Mater. Chem. A, 2017, 5(4): 1679-1686.
[23] Chen M M, Zhao E Y, Chen D F, Wu M M, Han S B, Huang Q Z, Yang L M, Xiao X L, Hu Z B. Decreasing Li/Ni disorder and improving the electrochemical performances of Ni-rich LiNi0.8Co0.1Mn0.1O2 by Ca doping[J]. Inorg. Chem., 2017, 56(14): 8355-8362.
[24]
Kasnatscheew J, Evertz M, Streipert B, Wagner R, Klopsch R, Vortmann B, Hahn H, Nowak S, Amereller M, Gentschev A C, Lamp P, Winter M. The truth about the 1st cycle coulombic efficiency of LiNi1/3Co1/3Mn1/3O2(NCM) cathodes[J]. Phys. Chem. Chem. Phys., 2016, 18(5): 3956-3965.
doi: 10.1039/c5cp07718d
pmid: 26771035
[25] Wei H X, Tang L B, Huang Y D, Wang Z Y, Luo Y H, He Z J, Yan C, Mao J, Dai K H, Zheng J C. Comprehensive understanding of Li/Ni intermixing in layered transition metal oxides[J]. Mater. Today, 2021, 51: 365-392.
[26] Huang Z J, Wang Z X, Zheng X B, Guo H J, Li X H, Jing Q, Yang Z H. Structural and electrochemical properties of Mg-doped nickel based cathode materials LiNi0.6Co0.2-Mn0.2-xMgxO2 for lithium ion batteries[J]. RSC Adv., 2015, 5(108): 88773-88779.
[27] Huang Z J, Wang Z X, Jing Q, Guo H J, Li X H, Yang Z H. Investigation on the effect of Na doping on structure and Li-ion kinetics of layered LiNi0.6Co0.2Mn0.2O2 cathode material[J]. Electrochim. Acta, 2016, 192: 120-126.
[28] Yoon C S, Choi M J, Jun D W, Zhang Q, Kaghazchi P, Kim K H, Sun Y K. Cation ordering of Zr-doped LiNiO2 cathode for lithium-ion batteries[J]. Chem. Mater., 2018, 30(5): 1808-1814.
[29] Liu S Y, Chen X, Zhao J Y, Su J M, Zhang C C, Huang T, Wu J H, Yu A S. Uncovering the role of Nb modification in improving the structure stability and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode charged at higher voltage of 4.5 V[J]. J. Power Sources, 2018, 374: 149-157.
[30] Jo J H, Jo C H, Yashiro H, Kim S J, Myung S T. Re-heating effect of Ni-rich cathode material on structure and electrochemical properties[J]. J. Power Sources, 2016, 313: 1-8.
[31] Noh H J, Youn S, Yoon C S, Sun Y K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. J. Power Sources, 2013, 233: 121-130.
[32] Eom J, Kim M G, Cho J. Storage characteristics of LiNi0.8-Co0.1+xMn0.1-xO2 (x = 0, 0.03, and 0.06) cathode materials for lithium batteries[J]. J. Electrochem. Soc., 2008, 155(3): A239-A245.
[33] Shen Y B, Wu Y Q, Xue H J, Wang S H, Yin D M, Wang L M, Cheng Y. Insight into the coprecipitation-controlled crystallization reaction for preparing lithium-layered oxide cathodes[J]. ACS Appl. Mater. Interfaces, 2021, 13(1): 717-726.
[34] Shaju K M, Rao G V S, Chowdari B V R. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries[J]. Electrochim. Acta, 2002, 48(2): 145-151.
[35] Su Y F, Chen G, Chen L, Li W K, Zhang Q Y, Yang Z R, Lu Y, Bao L Y, Tan J, Chen R J, Chen S, Wu F. Exposing the {010} planes by oriented self-assembly with nano-sheets to improve the electrochemical performances of Ni-rich Li[Ni0.8Co0.1Mn0.1]O2 microspheres[J]. ACS Appl. Mater. Interfaces, 2018, 10(7): 6407-6414.
[36] Hua W B, Liu W Y, Chen M Z, Indris S, Zheng Z, Guo X D, Bruns M, Wu T H, Chen Y X, Zhong B H, Chou S L, Kang Y M, Ehrenberg H. Unravelling the growth mechanism of hierarchically structured Ni1/3Co1/3Mn1/3(OH)2 and their application as precursors for high-power cathode materials[J]. Electrochim. Acta, 2017, 232: 123-131.
[37] Matienzo L J, Yin L I, Grim S O, Jr S W E. X-ray photoelectron spectroscopy of nickel compounds[J]. Inorg. Chem., 1973, 12: 2762-2769.
[38] Kim K S, Winograd N. X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment[J]. Surf. Sci., 1974, 43(2): 625-643.
[39] Tan B J, Klabunde K J, Sherwood P M A. XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica[J]. J. Am. Chem. Soc., 1991, 113: 855-861.
[40] Aoki A. X-ray Photoelectron spectroscopic studies on ZnS: MnF2 Phosphors[J]. Jpn. J. Appl. Phys., 1976, 15: 305-311.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons