•  
  •  
 

Corresponding Author

Xin-Ran Wang(wangxinran@bit.edu.cn);
Ying Bai(membrane@bit.edu.cn);
Chuan Wu(chuanwu@bit.edu.cn)

Abstract

The continuous development of the global energy structure transformation has put forward higher demands upon the development of batteries. The improvements of the energy density have become one of the important indicators and hot topic for novel secondary batteries. The energy density of existing lithium-ion battery has encountered a bottleneck due to the limitations of material and systems. Herein, this paper introduces the concept and development of multi-electron reaction materials over the past twenty years. Guided by the multi-electron reaction, light weight electrode and multi-ion effect, current development strategies and future trends of high-energy-density batteries are highlighted from the perspective of materials and structure system innovation. Typical cathode and anode materials with the multi-electron reactions are summarized from cation-redox to anion-redox, from intercalation-type to alloying-type, and from liquid systems to solid-state lithium batteries. The properties of the typical materials and their engineering prospects are comprehensively discussed, and additionally, the application potential and the main challenges currently encountered by solid-state batteries are also introduced. Finally, this paper gives a comprehensive outlook on the development of high-energy-density batteries.

Graphical Abstract

Keywords

high energy density, lithium-ion batteries, multi-electron reaction, solid-state batteries, electrode material system

Publication Date

2022-12-28

Online Available Date

2022-11-14

Revised Date

2022-10-25

Received Date

2022-09-21

References

[1] Yang Y S. A review of electrochemical energy storage researches in the past 22 years[J]. J. Electrochem., 2020, 26: 443-463

[2] Rudola A, Wright C J, Barker J. Reviewing the safe shipping of lithium-ion and sodium-ion cells: A materials chemistry perspective[J]. Energy Mater. Adv., 2021, 2021: 9798460

[3] Li W J, Xu H Y, Yang Q, Li J M, Zhang Z Y, Wang S B, Peng J Y, Zhang B, Chen X L, Zhang Z, Yang M, Zhao Y, Geng Y Y, Huang W S, Ding Z P, Zhang L, Tian Q Y, Yu H G, Li H. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Sci. Technol., 2020, 9: 448-478

[4] Gao M D, Li H, Xu L, Xue Q, Wang X N, Bai Y, Wu C. Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges[J]. J. Energy Chem., 2021, 59: 666-687.
doi: 10.1016/j.jechem.2020.11.034 URL

[5] Shen Y B, Zhang Y T, Han S J, Wang J W, Peng Z Q, Chen L W. Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes[J]. Joule, 2018, 2(9): 1674-1689.
doi: 10.1016/j.joule.2018.06.021 URL

[6] Wang X R, Tan G Q, Bai Y, Wu F, Wu C. Multi-electron reaction materials for high-energy-density secondary batteries: current status and prospective[J]. Electrochem. Energy Rev., 2021, 4(1): 35-66.
doi: 10.1007/s41918-020-00073-4 URL

[7] Zhang C Z, Liu Z, Wu F, Lin L J, Qi F. Electrochemical generation of ferrate on SnO2-Sb2O3/Ti electrodes in strong concentration basic condition[J]. Electrochem. Commun., 2004, 6(11): 1104-1109.
doi: 10.1016/j.elecom.2004.08.011 URL

[8] Jung C H, Shim H, Eum D, Hong S H. Challenges and recent progress in LiNixCoyMn1-x-yO2 (NCM) cathodes for lithium ion batteries[J]. J. Korean Ceram. Soc., 2021, 58(1): 1-27.
doi: 10.1007/s43207-020-00098-x URL

[9] Sun H H, Choi W, Lee J K, Oh I H, Jung H G. Control of electrochemical properties of nickel-rich layered cathode materials for lithium ion batteries by variation of the manganese to cobalt ratio[J]. J. Power Sources, 2015, 275: 877-883.
doi: 10.1016/j.jpowsour.2014.11.075 URL

[10] Wang L F, Wang R, Wang J Y, Xu R, Wang X D, Zhan C. Nanowelding to improve the chemomechanical stability of the Ni-rich layered cathode materials[J]. ACS Appl. Mater. Interfaces, 2021, 13(7): 8324-8336.
doi: 10.1021/acsami.0c20100 URL

[11] Noh H J, Chen Z, Yoon C S, Lu J, Amine K, Sun Y K. Cathode material with nanorod structure an application for advanced high-energy and safe lithium batteries[J]. Chem. Mater., 2013, 25(10): 2109-2115.
doi: 10.1021/cm4006772 URL

[12] Zhang J C, Yang Z Z, Gao R, Gu L, Hu Z B, Liu X F. Suppressing the structure deterioration of Ni-rich LiNi0.8Co0.1Mn0.1O2 through atom-scale interfacial integration of self-forming hierarchical spinel layer with Ni gradient concentration[J]. ACS Appl. Mater. Interfaces, 2017, 9(35): 29794-29803.
doi: 10.1021/acsami.7b08802 URL

[13] Jiang M, Danilov D L, Eichel R A, Notten P H L. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries[J]. Adv. Energy Mater., 2021, 11(48): 2103005.
doi: 10.1002/aenm.202103005 URL

[14] Zhao H C, Bai Y, Jin H F, Zhou J, Wang X R, Wu C. Unveiling thermal decomposition kinetics of single-crystalline Ni-rich LiNi0.88Co0.07Mn0.05O2 cathode for safe lithium-ion batteries[J]. Chem. Eng. J., 2022, 435: 134927.
doi: 10.1016/j.cej.2022.134927 URL

[15] Yu H J, Zhou H S. High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries[J]. J. Phys. Chem. Lett., 2013, 4(8): 1268-1280.
doi: 10.1021/jz400032v pmid: 26282140

[16] Johnson C S, Li N, Lefief C, Thackeray M M. Anomalous capacity and cycling stability of xLi2MnO3·(1-x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50 oC[J]. Electrochem. Commun., 2007, 9(4): 787-795.
doi: 10.1016/j.elecom.2006.11.006 URL

[17] Gu M, Belharouak I, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer D R, Zhang J G. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries[J]. ACS Nano, 2013, 7(1): 760-767.
doi: 10.1021/nn305065u pmid: 23237664

[18] Hu S L, Li Y, Chen Y H, Peng J M, Zhou T F, Pang W K, Didier C, Peterson V K, Wang H Q, Li Q Y, Guo Z P. Insight of a phase compatible surface coating for long-durable Li-rich layered oxide cathode[J]. Adv. Energy Mater., 2019, 9(34): 1901795.
doi: 10.1002/aenm.201901795 URL

[19] Yu R Z, Banis M N, Wang C H, Wu B, Huang Y, Cao S, Li J J, Jamil S, Lin X T, Zhao F P, Lin W H, Chang B B, Yang X K, Huang H, Wang X Y, Sun X L. Tailoring bulk Li+ ion diffusion kinetics and surface lattice oxygen activity for high-performance lithium-rich manganese-based layered oxides[J]. Energy Storage Mater., 2021, 37: 509-520

[20] Zuo Y X, Li B A, Jiang N, Chu W S, Zhang H, Zou R Q, Xia D G. A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure[J]. Adv. Mater., 2018, 30(16): 1707255.
doi: 10.1002/adma.201707255 URL

[21] Wang Z K, Li Y, Ji H Q, Zhou J Q, Qian T, Yan C L. Unity of opposites between soluble and insoluble lithium polysulfides in lithium-sulfur batteries[J]. Adv. Mater., 2022: 2203699

[22] Yuan K G, Wang A B, Cao G P, Yang Y S. Preparation and electrochemical performance of a novel lithium battery cathode material polysulfurpolyaniline[J]. Chem. J. Chinese U., 2005, 26(11):2117-2119

[23] Wang M J, Wang W K, Wang A B, Yuan K G, Miao L X, Zhang X L, Huang Y Q, Yu Z B, Qiu J Y. A multi-core-shell structured composite cathode material with a conductive polymer network for Li-S batteries[J]. Chem. Commun., 2013, 49(87): 10263-10265.
doi: 10.1039/c3cc45412f URL

[24] Zhao C R, Wang W K, Yu Z B, Zhang H, Wang A B, Yang Y S. Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities[J]. J. Mater. Chem., 2010, 20(5): 976-980.
doi: 10.1039/B911913B URL

[25] Yu Z B, Wang W K, Wang A B, Yuan K G, Yang Y S. Effect of electrolyte on electrochemical performance of sulfur electrode[J]. Battery Bimon., 2006, 36(1): 3-4

[26] Wang W K, Yu Z B, Yuan K G, Wang A B, Yang Y S. Key materials of high energy lithium sulfur batteries[J]. Prog. Chem., 2011, 23(2-3): 540-547

[27] Ge M, Cao C, Biesold G M, Sewell C D, Hao S M, Huang J, Zhang W, Lai Y, Lin Z. Recent advances in silicon-based electrodes: from fundamental research toward practical applications[J]. Adv. Mater., 2021, 33(16): 2004577.
doi: 10.1002/adma.202004577 URL

[28] Chan C K, Peng H L, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. High-performance lithium battery anodes using silicon nanowires[J]. Nat. Nanotechnol., 2008, 3(1): 31-35.
doi: 10.1038/nnano.2007.411 pmid: 18654447

[29] Chen S, Shen L, van Aken P A, Maier J, Yu Y. Dual-fun-ctionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries[J]. Adv. Mater., 2017, 29(21): 1605650.
doi: 10.1002/adma.201605650 URL

[30] Zhang J G, Xu W, Xiao J, Cao X, Liu J. Lithium metal anodes with nonaqueous electrolytes[J]. Chem. Rev., 2020, 120(24): 13312-13348.
doi: 10.1021/acs.chemrev.0c00275 URL

[31] Liu Y, Huang S B, Meng Q Q, Fan Y C, Wang B Y, Yang Y S, Cao G P, Zhang H. In-situ growth of Ag particles anchored Cu foam scaffold for dendrite-free lithium metal anode[J]. J. Alloy. Compd., 2021, 885: 160882.
doi: 10.1016/j.jallcom.2021.160882 URL

[32] Meng Q Q, Deng B, Zhang H M, Wang B Y, Zhang W F, Wen Y H, Ming H, Zhu X Y, Guan Y P, Xiang Y, Li M, Cao G P, Yang Y S, Peng H L, Zhang H, Huang Y Q. Heterogeneous nucleation and growth of electrodeposited lithium metal on the basal plane of single-layer graphene[J]. Energy Storage Mater., 2019, 16: 419-425

[33] Zhang R, Chen X, Shen X, Zhang X Q, Chen X R, Cheng X B, Yan C, Zhao C Z, Zhang Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule, 2018, 2(4): 764-777.
doi: 10.1016/j.joule.2018.02.001 URL

[34] Zhang K, Wu F, Zhang K, Weng S T, Wang X R, Gao M D, Sun Y H, Cao D, Bai Y, Xu H J, Wang X F, Wu C. Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode[J]. Energy Storage Mater., 2021, 41: 485-494

[35] Gao H, Grundish N S, Zhao Y, Zhou A, Goodenough J B. Formation of stable interphase of polymer-in-salt electrolyte in all-solid-state lithium batteries[J]. Energy Mater. Adv., 2021, 2021: 1932952

[36] Wu F, Zhang K, Liu Y R, Gao H C, Bai Y, Wang X R, Wu C. Polymer electrolytes and interfaces toward solid-state batteries: recent advances and prospects[J]. Energy Storage Mater., 2020, 33: 26-54

[37] Zhang K, Wu F, Wang X R, Zheng L M, Yang X Y, Zhao H C, Sun Y H, Zhao W B, Bai Y, Wu C A. An ion-dipole-reinforced polyether electrolyte with ion-solvation cages enabling high-voltage-tolerant and ion-conductive solid-state lithium metal batteries[J]. Adv. Funct. Mater., 2022, 32(5): 2107764.
doi: 10.1002/adfm.202107764 URL

[38] Zhang K, Wu F, Wang X R, Weng S T, Yang X Y, Zhao H C, Guo R Q, Sun Y H, Zhao W B, Song T L, Wang X F, Bai Y, Wu C. 8.5 μm-thick flexible-rigid hybrid solid-electrolyte/lithium integration for air-stable and interface-compatible all-solid-state lithium metal batteries[J]. Adv. Energy Mater., 2022, 12(24): 2200368.
doi: 10.1002/aenm.202200368 URL

[39] Cheng S H S, Liu C, Zhu F Y, Zhao L, Fan R, Chung C Y, Tang J N, Zeng X R, He Y B. (Oxalato)borate: The key ingredient for polyethylene oxide based composite electrolyte to achieve ultra-stable performance of high voltage solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal battery[J]. Nano Energy, 2021, 80: 105562.
doi: 10.1016/j.nanoen.2020.105562 URL

[40] Liu Y J, He P, Zhou H S. Rechargeable solid-state Li-air and Li-S batteries: materials, construction, and challenges[J]. Adv. Energy Mater., 2018, 8(4): 1701602.
doi: 10.1002/aenm.201701602 URL

[41] Li S M, Chen Z F, Zhang W T, Li S N, Pan F. High-thro-ughput screening of protective layers to stabilize the electrolyte-anode interface in solid-state Li-metal batteries[J]. Nano Energy, 2022, 102: 107640.
doi: 10.1016/j.nanoen.2022.107640 URL

[42] Guo Q Y, Xu F L, Shen L, Deng S G, Wang Z Y, Li M Q, Yao X Y. 20 μm-thick Li6.4La3Zr1.4Ta0.6O12-based flexible solid electrolytes for all-solid-state lithium batteries[J]. Energy Mater. Adv., 2022: 9753506

[43] Zhu L, Wang Y M, Wu Y M, Feng W L, Liu Z L, Tang W P, Wang X W, Xia Y Y. Boron nitride-based release agent coating stabilizes Li1.3Al0.3Ti1.7(PO4)3/Li interface with superior lean-lithium electrochemical performance and thermal stability[J]. Adv. Funct. Mater., 2022, 32(29): 2201136.
doi: 10.1002/adfm.202201136 URL

[44] Wu J H, Liu S F, Han F D, Yao X Y, Wang C S. Lithium/sulfide all-solid-state batteries using sulfide electroly-tes[J]. Adv. Mater., 2021, 33(6): 2000751.
doi: 10.1002/adma.202000751 URL

[45] Nikodimos Y, Huang C J, Taklu B W, Su W N, Hwang B J. Chemical stability of sulfide solid-state electrolytes: Stability toward humid air and compatibility with solvents and binders[J]. Energy Environ. Sci., 2022, 15: 991-1033.
doi: 10.1039/D1EE03032A URL

[46] Zhang Q, Cao D X, Ma Y, Natan A, Aurora P, Zhu H L. Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries[J]. Adv. Mater., 2019, 31(44): 1901131.
doi: 10.1002/adma.201901131 URL

[47] Lee J, Lee T, Char K, Kim K J, Choi J W. Issues and advances in scaling up sulfide-based all-solid-state batteries[J]. Accounts. Chem. Res., 2021, 54(17): 3390-3402.
doi: 10.1021/acs.accounts.1c00333 URL

[48] Sun N, Song Y J, Liu Q S, Zhao W, Zhang F, Ren L P, Chen M, Zhou Z N, Xu Z H, Lou S F. Surface-to-bulk synergistic modification of single crystal cathode enables stable cycling of sulfide-based all-solid-state batteries at 4.4 V[J]. Adv. Energy Mater., 2022, 12(29): 2200682.
doi: 10.1002/aenm.202200682 URL

[49] Liang Y H, Liu H, Wang G X, Wang C, Ni Y, Nan C W, Fan L Z. Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries[J]. InfoMat, 2022, 4(5): e12292

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.