Abstract
Sulfurized polyacrylonitrile (SPAN) is regarded as an attractive cathode candidate of lithium-sulfur (Li-S) batteries for its non-dissolution mechanism and effective alleviation of polysulfides shuttling issue in Li-S batteries, displaying high utilization of cathode active material, outstanding cycle stability and structural stability. However, the relation between cyclization degree and cycle stability of SPAN is still unveiled. In this work, SPAN-C-V composites were synthesized by co-introduction of CuSO4 and zinc n-ethyl-n-phenyldithiocarbamate (ZDB) in the co-heating of sulfur and polyacrylonitrile. The co-introduction of CuSO4 and ZDB reduced the cyclization reaction onset temperature of PAN while increased the C—C/C=C within SPAN-C-V, thus led to an increase in the degree of cyclization of SPAN-C-V, achieving excellent electrochemical performance by simultaneously improving the cyclization degree and increasing the content of sulfur. The SPAN-C-V exhibited an initial reversible capacity of 805 mAh·g-1 and 601 mAh·g-1 after 100 cycles with the capacity retention rate of 93% at 0.2 C (1 C = 600 mAh·g-1). The focus on the cyclization degree of SPAN provides an enlightenment of advanced cathode material.
Graphical Abstract
Keywords
sulfurized polyacrylonitrile, CuSO4, zinc n-ethyl-n-phenyldithiocarbamate, cyclization degree, lithium-sulfur battery
Publication Date
2022-12-28
Online Available Date
2022-11-14
Revised Date
2022-10-06
Received Date
2022-09-15
Recommended Citation
Xuan Ji, Jia-Yu Wang, An-Bang Wang, Wei-Kun Wang, Ming Yao, Ya-Qin Huang.
Preparation of Highly-Cyclized Sulfurized Polyacrylonitrile for Lithium-Sulfur Batteries[J]. Journal of Electrochemistry,
2022
,
28(12): 2219010.
DOI: 10.13208/j.electrochem.2219010
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss12/5
References
[1]
Seh Z W, Sun Y, Zhang Q, Cui Y. Designing high-energy lithium-sulfur batteries[J]. Chem. Soc. Rev., 2016, 45(20): 5605-5634.
pmid: 27460222
[2]
Manthiram A, Fu Y, Chung S H, Zu C, Su Y S. Rechargeable lithium-sulfur batteries[J]. Chem. Rev., 2014, 114(23): 11751-11787.
doi: 10.1021/cr500062v
pmid: 25026475
[3]
Wang L, Zhao J S, He X M, Wan C R. Kinetic investigation of sulfurized polyacrylonitrile cathode material by electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2011, 56(14): 5252-5256.
doi: 10.1016/j.electacta.2011.03.009
URL
[4]
Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat. Mater., 2009, 8(6): 500-506.
doi: 10.1038/nmat2460
URL
[5]
Takeuchi T, Kojima T, Kageyama H, Mitsuhara K, Ogawa M, Yamanaka K, Ohta T, Kobayashi H, Nagai R, Ohta A. High capacity sulfurized alcohol composite positive electrode materials applicable for lithium sulfur batteries[J]. J. Electrochem. Soc., 2016, 164(1): A6288-A6293.
doi: 10.1149/2.0501701jes
URL
[6]
He X M, Pu W H, Ren J G, Wang L, Wang J L, Jiang C Y, Wan C R. Charge/discharge characteristics of sulfur composite cathode materials in rechargeable lithium batteries[J]. Electrochim. Acta, 2007, 52(25): 7372-7376.
doi: 10.1016/j.electacta.2007.06.016
URL
[7]
Yun J H, Kim J H, Kim D K, Lee H W. Suppressing polysulfide dissolution via cohesive forces by interwoven carbon nanofibers for high-areal-capacity lithium-sulfur batteries[J]. Nano Lett., 2017, 18(1): 475-481.
doi: 10.1021/acs.nanolett.7b04425
URL
[8]
Wang J L, Yang J, Wan C R, Du K, Xie J Y, Xu N X. Sulfur composite cathode materials for rechargeable lithium batteries[J]. Adv. Funct. Mater., 2003, 13(6): 487-492.
doi: 10.1002/adfm.200304284
URL
[9]
Zhang T, Hong M, Yang J, Xu Z X, Wang J L, Guo Y S, Liang C D. A high performance lithium-ion-sulfur battery with a free-standing carbon matrix supported Li-rich alloy anode[J]. Chem. Sci., 2018, 9(47): 8829-8835.
doi: 10.1039/c8sc02897d
pmid: 30627400
[10]
Yang H J, Chen J H, Yang J, Wang J L. Prospect of sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) cathode materials for rechargeable lithium batteries[J]. Angew. Chem. Int. Edit., 2020, 59(19): 7306-7318.
doi: 10.1002/anie.201913540
URL
[11] Ahmed M S, Lee S, Agostini M, Jeong M G, Jung H G, Ming J, Sun Y K, Kim J, Hwang J Y. Multiscale understanding of covalently fixed sulfur-polyacrylonitrile composite as advanced cathode for metal-sulfur batteries[J]. Adv. Sci., 2021, 8(21): e2101123.
[12]
Wang L, He X M, Li J J, Gao J, Fang M, Tian G Y, Wang J L, Fan S S. Graphene-coated plastic film as current collector for lithium/sulfur batteries[J]. J. Power Sources, 2013, 239: 623-627.
doi: 10.1016/j.jpowsour.2013.02.008
URL
[13]
Chen H W, Wang C H, Hu C J, Zhang J S, Gao S, Lu W, Chen L W. Vulcanization accelerator enabled sulfurized carbon material for high capacity high stability lithium-sulfur batteries[J]. J. Mater. Chem. A, 2015, 3: 1392.
doi: 10.1039/C4TA05938G
URL
[14]
Wang Y, Shuai Y, Chen K H. Diphenyl guanidine as vulcanization accelerators in sulfurized polyacrylonitrile for high performance lithium-sulfur battery[J]. Chem. Eng. J., 2020, 388: 124378.
doi: 10.1016/j.cej.2020.124378
URL
[15]
Wang Y, Zhang Y P, Shuai Y, Chen K H. Diphenyl guanidine vulcanization accelerators enable sulfurized polyacrylonitrile cathode for high capacity and ether-compatible by fast kinetic[J]. Energy, 2021, 233: 121160.
doi: 10.1016/j.energy.2021.121160
URL
[16]
Jin J, van Swaaij A P J, Noordermeer J W M, Blume A, Dierkes W K. On the various roles of 1,3-DIPHENYL Guanidine in silica/silane reinforced sbr/br blends[J]. Polym. Test., 2021, 93: 106858.
doi: 10.1016/j.polymertesting.2020.106858
URL
[17] Liu R G, Xu J. Recent progress in high performance PAN based carbon fibers[J]. Sci. Tech. review, 2018, 36(19): 32-42.
[18]
KO T H, Huang L C. Preparation of high-performance carbon fibres from PAN fibres modified with cobaltous chloride[J]. J. Mater. Sci., 1992, 27(9): 2429-2436.
doi: 10.1007/BF01105054
URL
[19] Li J M. The effect of cuprous salt on polyacrylonitrile fiber(PAN) during thermostablization[J]. J. China Textile University, 1992, 18(4): 22-29.
[20] Zhang W X, Wang Y Z, Wang Y X, Cai H S, Li M S. Effect of NiSO4 on the structure and properties of PAN precursors and resultant carbon fibres[J]. Acta Polym. Sin., 2001, (5): 670-673.
[21]
Ma S B, Zhang Z G, Wang Y, Yu Z J, Cui C, He M X, Huo H, Yin G P, Zuo P J. Iodine-doped sulfurized polyacrylonitrile with enhanced electrochemical performance for lithium sulfur batteries in carbonate electrolyte.[J]. Chem. Eng. J., 2021, 418: 129410.
doi: 10.1016/j.cej.2021.129410
URL
[22]
Wang J, He Y S, Yang J. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries[J]. Adv. Mater., 2015, 27(3): 569-575.
doi: 10.1002/adma.201402569
URL
[23]
Dou T, Qin Y, Zhang F Z, Lei X D. CuS nanosheet arrays for electrochemical CO2 reduction with surface reconstruction and the effect on selective formation of formate[J]. ACS Appl. Energy Mater., 2021, 4(5): 4376-4384.
doi: 10.1021/acsaem.0c03190
URL
[24] Jin Z Q, Liu Y G, Wang W K, Wang A B, Hu B W, Shen M, Gao T, Zhao P C, Yang Y S. A new insight into the lithium storage mechanism of sulfurized polyacrylonitrile with no soluble intermediates[J]. Energy Storage Mater., 2018, 14: 272-278.
[25]
Ratanavaraporn J, Soontornvipart K, Shuangshoti S, Shuangshoti S, Damrongsakkul S. Localized delivery of curcumin from injectable gelatin/Thai silk fibroin microspheres for anti-inflammatory treatment of osteoarthritis in a rat model[J]. Inflammopharmacology, 2017, 25(2): 211-221.
doi: 10.1007/s10787-017-0318-3
pmid: 28251487
[26]
Wang Y S, Xu L H, Wang M Z, Pang W M, Ge X W. Structural identification of polyacrylonitrile during thermal treatment by selective 13C labeling and solid-state 13C NMR spectroscopy[J]. Macromolecules, 2014, 47(12): 3901-3908.
doi: 10.1021/ma500727n
URL
[27]
Yuan Z, Peng H J, Hou T Z, Huang J Q, Chen C M, Wang D W, Cheng X B, Wei F, Zhang Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Lett., 2016, 16(1): 519-527.
doi: 10.1021/acs.nanolett.5b04166
pmid: 26713782
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons