Abstract
Theoretical simulations of electrocatalysis are vital for understanding the mechanism of the electrochemical process at the atomic level. It can help to reveal the in-situ structures of electrode surfaces and establish the microscopic mechanism of electrocatalysis, thereby solving the problems such as electrode oxidation and corrosion. However, there are still many problems in the theoretical electrochemical simulations, including the solvation effects, the electric double layer, and the structural transformation of electrodes. Here we review recent advances of theoretical methods in electrochemical modeling, in particular, the double reference approach, the periodic continuum solvation model based on the modified Poisson-Boltzmann equation (CM-MPB), and the stochastic surface walking method based on the machine learning potential energy surface (SSW-NN). The case studies of oxygen reduction reaction by using CM-MPB and SSW-NN are presented.
Graphical Abstract
Keywords
CM-MPB, machine learning, SSW, LASP
Publication Date
2022-02-28
Online Available Date
2022-02-28
Revised Date
2021-12-21
Received Date
2021-11-04
Recommended Citation
Ji-Li Li, Ye-Fei Li, Zhi-Pan Liu.
Recent Advances in Electrochemical Kinetics Simulations and Their Applications in Pt-based Fuel Cells[J]. Journal of Electrochemistry,
2022
,
28(2): 2108511.
DOI: 10.13208/j.electrochem.210851
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss2/1
References
[1]
Yang Z G, Zhang J L, Kintner-Meyer M C W, Lu X C, Choi D, Lemmon J P, Liu J. Electrochemical energy storage for green grid[J]. Chem. Rev., 2011, 111(5):3577-3613.
doi: 10.1021/cr100290v
URL
[2]
Jukk K, Alexeyeva N, Ritslaid P, Kozlova J, Sammelselg V, Tammeveski K. Electrochemical reduction of oxygen on heat-treated Pd nanoparticle/multi-walled carbon nano-tube composites in alkaline solution[J]. Electrocatalysis, 2013, 4(1):42-48.
doi: 10.1007/s12678-012-0117-y
URL
[3]
Gasteiger H A, Markovic N M. Just a dream-or future reality[J]. Science, 2009, 324(5923):48-49.
doi: 10.1126/science.1172083
pmid: 19342578
[4]
Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Synjournal of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007, 316(5825):732-735.
pmid: 17478717
[5]
Stamenkovic V R, Mun B S, Mayrhofer K J J, Ross P N, Markovic N M. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces[J]. J. Am. Chem. Soc., 2006, 128(27):8813-8819.
pmid: 16819874
[6]
Gasteiger H A, Kocha S S, Sompalli B, Wagner F T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Appl. Catal. B, 2005, 56(1):9-35.
doi: 10.1016/j.apcatb.2004.06.021
URL
[7]
Zhu J, Hu L, Zhao P, Lee L Y S, Wong K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem. Rev., 2020, 120(2):851-918.
doi: 10.1021/acs.chemrev.9b00248
URL
[8]
Lim B, Jiang M J, Camargo P H C, Cho E C, Tao J, Lu X M, Zhu Y M, Xia Y N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction[J]. Science, 2009, 324(5932):1302-1305.
doi: 10.1126/science.1170377
URL
[9]
Zhang J, Sasaki K, Sutter E, Adzic R R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters[J]. Science, 2007, 315(5809):220-222.
pmid: 17218522
[10]
Fang Y H, Liu Z P. Tafel kinetics of electrocatalytic reactions: from experiment to first-principles[J]. ACS Catal., 2014, 4(12):4364-4376.
doi: 10.1021/cs501312v
URL
[11]
Gouy M. Sur la constitution de la charge électrique à la surface d'un électrolyte[J]. J. Phys. Theor. Appl., 1910, 9(1):457-468.
doi: 10.1051/jphystap:019100090045700
URL
[12]
Chapman D L, LI. A contribution to the theory of electrocapillarity[J]. Philos. Mag., 1913, 25(148):475-481.
doi: 10.1080/14786440408634187
URL
[13] Stern O. Zur theorie der elektrolytischen doppelschicht[J]. Elektrochem. Angew. Phys. Chem., 1924, 30(21-22):508-516.
[14]
Furuya N, Shibata M. Structural changes at various Pt single crystal surfaces with potential cycles in acidic and alkaline solutions[J]. J. Electroanal. Chem., 1999, 467(1):85-91.
doi: 10.1016/S0022-0728(99)00077-7
URL
[15] Basdogan Y, Maldonado A M, Keith J A. Advances and challenges in modeling solvated reaction mechanisms for renewable fuels and chemicals[J]. Wires Comput. Mol. Sci., 2020, 10(2):e1446.
[16]
Wang H F, Liu Z P. Formic acid oxidation at Pt/H2O interface from periodic DFT calculations integrated with a continuum solvation model[J]. J. Phys. Chem. C, 2009, 113(40):17502-17508.
doi: 10.1021/jp9059888
URL
[17]
Li Y F, Liu Z P, Liu L, Gao W. Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous surroundings[J]. J. Am. Chem. Soc., 2010, 132(37):13008-13015.
doi: 10.1021/ja105340b
URL
[18]
Fang Y H, Liu Z P. Electrochemical reactions at the electrode/solution interface: theory and applications to water electrolysis and oxygen reduction[J]. Sci. China Chem., 2010, 53(3):543-552.
doi: 10.1007/s11426-010-0047-6
URL
[19]
Shang C, Liu Z P. Stochastic surface walking method for structure prediction and pathway searching[J]. J. Chem. Theory Comput., 2013, 9(3):1838-1845.
doi: 10.1021/ct301010b
URL
[20]
Shang C, Liu Z P. Constrained broyden minimization combined with the dimer method for locating transition state of complex reactions[J]. J. Chem. Theory Comput., 2010, 6(4):1136-1144.
doi: 10.1021/ct9005147
URL
[21]
Artrith N, Urban A, Ceder G. Constructing first-principles phase diagrams of amorphous LixSi using machine-learning-assisted sampling with an evolutionary algorithm[J]. J. Chem. Phys., 2018, 148(24):241711.
doi: 10.1063/1.5017661
URL
[22]
Wales D J, Doye J P K. Global optimization by basin-hopping and the lowest energy structures of lennard-Jones clusters containing up to 110 atoms[J]. J. Phys. Chem. A, 1997, 101(28):5111-5116.
doi: 10.1021/jp970984n
URL
[23]
Hart G L W, Mueller T, Toher C, Curtarolo S. Machine learning for alloys[J]. Nat. Rev. Mater., 2021, 6(8):730-755.
doi: 10.1038/s41578-021-00340-w
URL
[24]
Norskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kit-chin J R, Bligaard T, Jonsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. J. Phys. Chem. B, 2004, 108(46):17886-17892.
doi: 10.1021/jp047349j
URL
[25]
Lozovoi A Y, Alavi A, Kohanoff J, Lynden-Bell R M. Ab initio simulation of charged slabs at constant chemical potential[J]. J. Chem. Phys., 2001, 115(4):1661-1669.
doi: 10.1063/1.1379327
URL
[26]
Nörskov J K, Bligaard T, Rossmeisl J, Christensen C H. Towards the computational design of solid catalysts[J]. Nat. Chem., 2009, 1(1):37-46.
doi: 10.1038/nchem.121
URL
[27]
Filhol J S, Neurock M. Elucidation of the electrochemical activation of water over Pd by first principles[J]. Angew. Chem. Int. Ed., 2006, 45(3):402-406.
doi: 10.1002/(ISSN)1521-3773
URL
[28]
Reiss H, Heller A. The absolute potential of the standard hydrogen electrode: a new estimate[J]. J. Phys. Chem, 1985, 89(20):4207-4213.
doi: 10.1021/j100266a013
URL
[29]
Janik M J, Taylor C D, Neurock M. First principles analysis of the electrocatalytic oxidation of methanol and carbon monoxide[J]. Top. Catal., 2007, 46(3):306-319.
doi: 10.1007/s11244-007-9004-9
URL
[30]
Fattebert J L, Gygi F. Density functional theory for efficient ab initio molecular dynamics simulations in solution[J]. J. Comput. Chem., 2002, 23(6):662-666.
pmid: 11939598
[31]
Fattebert J L, Gygi F. Linear-scaling first-principles mol-ecular dynamics with plane-waves accuracy[J]. Phys. Rev. B, 2006, 73(11):115124.
doi: 10.1103/PhysRevB.73.115124
URL
[32]
Fang Y H, Liu Z P. Surface phase diagram and oxygen coupling kinetics on flat and stepped Pt surfaces under electrochemical potentials[J]. J. Phys. Chem. C, 2009, 113(22):9765-9772.
doi: 10.1021/jp901091a
URL
[33]
Fang Y H, Wei G F, Liu Z P. Theoretical modeling of electrode/electrolyte interface from first-principles periodic continuum solvation method[J]. Catal. Today, 2013, 202:98-104.
doi: 10.1016/j.cattod.2012.04.055
URL
[34]
Shang C, Zhang X J, Liu Z P. Stochastic surface walking method for crystal structure and phase transition pathway prediction[J]. Phys. Chem. Chem. Phys., 2014, 16(33):17845-17856.
doi: 10.1039/C4CP01485E
URL
[35]
Wei G F, Liu Z P. Restructuring and hydrogen evolution on Pt nanoparticle[J]. Chem. Sci., 2015, 6(2):1485-1490.
doi: 10.1039/C4SC02806F
URL
[36]
Li Y F, Liu Z P. Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings[J]. J. Am. Chem. Soc., 2011, 133(39):15743-15752.
doi: 10.1021/ja206153v
URL
[37]
Zhang X J, Shang C, Liu Z P. Stochastic surface walking reaction sampling for resolving heterogeneous catalytic reaction network: A revisit to the mechanism of water-gas shift reaction on Cu[J]. J. Chem. Phys., 2017, 147(15):152706.
doi: 10.1063/1.4989540
URL
[38]
Behler J. First principles neural network potentials for reactive simulations of large molecular and condensed systems[J]. Angew. Chem. Int. Ed., 2017, 56(42):12828-12840.
doi: 10.1002/anie.201703114
URL
[39]
Huang S D, Shang C, Zhang X J, Liu Z P. Material discovery by combining stochastic surface walking global optimization with a neural network[J]. Chem. Sci., 2017, 8(9):6327-6337.
doi: 10.1039/C7SC01459G
URL
[40] Huang S D, Shang C, Kang P L, Zhang X J, Liu Z P. LASP: Fast global potential energy surface exploration[J]. Wires. Comput. Mol. Sci., 2019, 9(6):e1415.
[41]
Hansen H A, Rossmeisl J, Nörskov J K. Surface pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT[J]. Phys. Chem. Chem. Phys., 2008, 10(25):3722-3730.
doi: 10.1039/b803956a
pmid: 18563233
[42]
Wei G F, Fang Y H, Liu Z P. First principles tafel kinetics for resolving key parameters in optimizing oxygen electrocatalytic reduction catalyst[J]. J. Phys. Chem. C, 2012, 116(23):12696-12705.
doi: 10.1021/jp3034616
URL
[43]
He Q G, Yang X F, Chen W, Mukerjee S, Koel B, Chen S W. Influence of phosphate anion adsorption on the kinetics of oxygen electroreduction on low index Pt(hkl) single crystals[J]. Phys. Chem. Chem. Phys., 2010, 12(39):12544-12555.
doi: 10.1039/c0cp00433b
URL
[44]
Fang Y H, Liu Z P. Toward anticorrosion electrodes: site-selectivity and self-acceleration in the electrochemical corrosion of platinum[J]. J. Phys. Chem. C, 2010, 114(9):4057-4062.
doi: 10.1021/jp9111734
URL
[45]
Wei G F, Liu Z P. Towards active and stable oxygen reduction cathodes: a density functional theory survey on Pt2M skin alloys[J]. Energy Environ. Sci., 2011, 4(4):1268-1272.
doi: 10.1039/c0ee00762e
URL
[46]
Wei G F, Liu Z P. Optimum nanoparticles for electrocatalytic oxygen reduction: the size, shape and new design[J]. Phys. Chem. Chem. Phys., 2013, 15(42):18555-18561.
doi: 10.1039/c3cp53758g
URL
[47]
Leontyev I N, Belenov S V, Guterman V E, Haghi-Ashtiani P, Shaganov A P, Dkhil B. Catalytic activity of carbon-supported Pt nanoelectrocatalysts. Why reducing the size of Pt nanoparticles is not always beneficial[J]. J. Phys. Chem. C, 2011, 115(13):5429-5434.
doi: 10.1021/jp1109477
URL
[48]
Fang Y H, Song D D, Li H X, Liu Z P. Structure and activity of potential-dependent Pt(110) surface phases revealed from machine-learning atomic simulation[J]. J. Phys. Chem. C, 2021, 125(20):10955-10963.
doi: 10.1021/acs.jpcc.1c02222
URL
[49]
Stamenkovic V R, Fowler B, Mun B S, Wang G, Ross P N, Lucas C A, Markovic N M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site avai-lability[J]. Science, 2007, 315(5811):493-497.
doi: 10.1126/science.1135941
pmid: 17218494
Included in
Catalysis and Reaction Engineering Commons, Computational Chemistry Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons