•  
  •  
 

Corresponding Author

Ye-Fei Li(yefeil@fudan.edu.cn);
Zhi-Pan Liu(zpliu@fudan.edu.cn)

Abstract

Theoretical simulations of electrocatalysis are vital for understanding the mechanism of the electrochemical process at the atomic level. It can help to reveal the in-situ structures of electrode surfaces and establish the microscopic mechanism of electrocatalysis, thereby solving the problems such as electrode oxidation and corrosion. However, there are still many problems in the theoretical electrochemical simulations, including the solvation effects, the electric double layer, and the structural transformation of electrodes. Here we review recent advances of theoretical methods in electrochemical modeling, in particular, the double reference approach, the periodic continuum solvation model based on the modified Poisson-Boltzmann equation (CM-MPB), and the stochastic surface walking method based on the machine learning potential energy surface (SSW-NN). The case studies of oxygen reduction reaction by using CM-MPB and SSW-NN are presented.

Graphical Abstract

Keywords

CM-MPB, machine learning, SSW, LASP

Publication Date

2022-02-28

Online Available Date

2022-02-28

Revised Date

2021-12-21

Received Date

2021-11-04

References

[1] Yang Z G, Zhang J L, Kintner-Meyer M C W, Lu X C, Choi D, Lemmon J P, Liu J. Electrochemical energy storage for green grid[J]. Chem. Rev., 2011, 111(5):3577-3613.
doi: 10.1021/cr100290v URL

[2] Jukk K, Alexeyeva N, Ritslaid P, Kozlova J, Sammelselg V, Tammeveski K. Electrochemical reduction of oxygen on heat-treated Pd nanoparticle/multi-walled carbon nano-tube composites in alkaline solution[J]. Electrocatalysis, 2013, 4(1):42-48.
doi: 10.1007/s12678-012-0117-y URL

[3] Gasteiger H A, Markovic N M. Just a dream-or future reality[J]. Science, 2009, 324(5923):48-49.
doi: 10.1126/science.1172083 pmid: 19342578

[4] Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Synjournal of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007, 316(5825):732-735.
pmid: 17478717

[5] Stamenkovic V R, Mun B S, Mayrhofer K J J, Ross P N, Markovic N M. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces[J]. J. Am. Chem. Soc., 2006, 128(27):8813-8819.
pmid: 16819874

[6] Gasteiger H A, Kocha S S, Sompalli B, Wagner F T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Appl. Catal. B, 2005, 56(1):9-35.
doi: 10.1016/j.apcatb.2004.06.021 URL

[7] Zhu J, Hu L, Zhao P, Lee L Y S, Wong K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem. Rev., 2020, 120(2):851-918.
doi: 10.1021/acs.chemrev.9b00248 URL

[8] Lim B, Jiang M J, Camargo P H C, Cho E C, Tao J, Lu X M, Zhu Y M, Xia Y N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction[J]. Science, 2009, 324(5932):1302-1305.
doi: 10.1126/science.1170377 URL

[9] Zhang J, Sasaki K, Sutter E, Adzic R R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters[J]. Science, 2007, 315(5809):220-222.
pmid: 17218522

[10] Fang Y H, Liu Z P. Tafel kinetics of electrocatalytic reactions: from experiment to first-principles[J]. ACS Catal., 2014, 4(12):4364-4376.
doi: 10.1021/cs501312v URL

[11] Gouy M. Sur la constitution de la charge électrique à la surface d'un électrolyte[J]. J. Phys. Theor. Appl., 1910, 9(1):457-468.
doi: 10.1051/jphystap:019100090045700 URL

[12] Chapman D L, LI. A contribution to the theory of electrocapillarity[J]. Philos. Mag., 1913, 25(148):475-481.
doi: 10.1080/14786440408634187 URL

[13] Stern O. Zur theorie der elektrolytischen doppelschicht[J]. Elektrochem. Angew. Phys. Chem., 1924, 30(21-22):508-516.

[14] Furuya N, Shibata M. Structural changes at various Pt single crystal surfaces with potential cycles in acidic and alkaline solutions[J]. J. Electroanal. Chem., 1999, 467(1):85-91.
doi: 10.1016/S0022-0728(99)00077-7 URL

[15] Basdogan Y, Maldonado A M, Keith J A. Advances and challenges in modeling solvated reaction mechanisms for renewable fuels and chemicals[J]. Wires Comput. Mol. Sci., 2020, 10(2):e1446.

[16] Wang H F, Liu Z P. Formic acid oxidation at Pt/H2O interface from periodic DFT calculations integrated with a continuum solvation model[J]. J. Phys. Chem. C, 2009, 113(40):17502-17508.
doi: 10.1021/jp9059888 URL

[17] Li Y F, Liu Z P, Liu L, Gao W. Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous surroundings[J]. J. Am. Chem. Soc., 2010, 132(37):13008-13015.
doi: 10.1021/ja105340b URL

[18] Fang Y H, Liu Z P. Electrochemical reactions at the electrode/solution interface: theory and applications to water electrolysis and oxygen reduction[J]. Sci. China Chem., 2010, 53(3):543-552.
doi: 10.1007/s11426-010-0047-6 URL

[19] Shang C, Liu Z P. Stochastic surface walking method for structure prediction and pathway searching[J]. J. Chem. Theory Comput., 2013, 9(3):1838-1845.
doi: 10.1021/ct301010b URL

[20] Shang C, Liu Z P. Constrained broyden minimization combined with the dimer method for locating transition state of complex reactions[J]. J. Chem. Theory Comput., 2010, 6(4):1136-1144.
doi: 10.1021/ct9005147 URL

[21] Artrith N, Urban A, Ceder G. Constructing first-principles phase diagrams of amorphous LixSi using machine-learning-assisted sampling with an evolutionary algorithm[J]. J. Chem. Phys., 2018, 148(24):241711.
doi: 10.1063/1.5017661 URL

[22] Wales D J, Doye J P K. Global optimization by basin-hopping and the lowest energy structures of lennard-Jones clusters containing up to 110 atoms[J]. J. Phys. Chem. A, 1997, 101(28):5111-5116.
doi: 10.1021/jp970984n URL

[23] Hart G L W, Mueller T, Toher C, Curtarolo S. Machine learning for alloys[J]. Nat. Rev. Mater., 2021, 6(8):730-755.
doi: 10.1038/s41578-021-00340-w URL

[24] Norskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kit-chin J R, Bligaard T, Jonsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. J. Phys. Chem. B, 2004, 108(46):17886-17892.
doi: 10.1021/jp047349j URL

[25] Lozovoi A Y, Alavi A, Kohanoff J, Lynden-Bell R M. Ab initio simulation of charged slabs at constant chemical potential[J]. J. Chem. Phys., 2001, 115(4):1661-1669.
doi: 10.1063/1.1379327 URL

[26] Nörskov J K, Bligaard T, Rossmeisl J, Christensen C H. Towards the computational design of solid catalysts[J]. Nat. Chem., 2009, 1(1):37-46.
doi: 10.1038/nchem.121 URL

[27] Filhol J S, Neurock M. Elucidation of the electrochemical activation of water over Pd by first principles[J]. Angew. Chem. Int. Ed., 2006, 45(3):402-406.
doi: 10.1002/(ISSN)1521-3773 URL

[28] Reiss H, Heller A. The absolute potential of the standard hydrogen electrode: a new estimate[J]. J. Phys. Chem, 1985, 89(20):4207-4213.
doi: 10.1021/j100266a013 URL

[29] Janik M J, Taylor C D, Neurock M. First principles analysis of the electrocatalytic oxidation of methanol and carbon monoxide[J]. Top. Catal., 2007, 46(3):306-319.
doi: 10.1007/s11244-007-9004-9 URL

[30] Fattebert J L, Gygi F. Density functional theory for efficient ab initio molecular dynamics simulations in solution[J]. J. Comput. Chem., 2002, 23(6):662-666.
pmid: 11939598

[31] Fattebert J L, Gygi F. Linear-scaling first-principles mol-ecular dynamics with plane-waves accuracy[J]. Phys. Rev. B, 2006, 73(11):115124.
doi: 10.1103/PhysRevB.73.115124 URL

[32] Fang Y H, Liu Z P. Surface phase diagram and oxygen coupling kinetics on flat and stepped Pt surfaces under electrochemical potentials[J]. J. Phys. Chem. C, 2009, 113(22):9765-9772.
doi: 10.1021/jp901091a URL

[33] Fang Y H, Wei G F, Liu Z P. Theoretical modeling of electrode/electrolyte interface from first-principles periodic continuum solvation method[J]. Catal. Today, 2013, 202:98-104.
doi: 10.1016/j.cattod.2012.04.055 URL

[34] Shang C, Zhang X J, Liu Z P. Stochastic surface walking method for crystal structure and phase transition pathway prediction[J]. Phys. Chem. Chem. Phys., 2014, 16(33):17845-17856.
doi: 10.1039/C4CP01485E URL

[35] Wei G F, Liu Z P. Restructuring and hydrogen evolution on Pt nanoparticle[J]. Chem. Sci., 2015, 6(2):1485-1490.
doi: 10.1039/C4SC02806F URL

[36] Li Y F, Liu Z P. Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings[J]. J. Am. Chem. Soc., 2011, 133(39):15743-15752.
doi: 10.1021/ja206153v URL

[37] Zhang X J, Shang C, Liu Z P. Stochastic surface walking reaction sampling for resolving heterogeneous catalytic reaction network: A revisit to the mechanism of water-gas shift reaction on Cu[J]. J. Chem. Phys., 2017, 147(15):152706.
doi: 10.1063/1.4989540 URL

[38] Behler J. First principles neural network potentials for reactive simulations of large molecular and condensed systems[J]. Angew. Chem. Int. Ed., 2017, 56(42):12828-12840.
doi: 10.1002/anie.201703114 URL

[39] Huang S D, Shang C, Zhang X J, Liu Z P. Material discovery by combining stochastic surface walking global optimization with a neural network[J]. Chem. Sci., 2017, 8(9):6327-6337.
doi: 10.1039/C7SC01459G URL

[40] Huang S D, Shang C, Kang P L, Zhang X J, Liu Z P. LASP: Fast global potential energy surface exploration[J]. Wires. Comput. Mol. Sci., 2019, 9(6):e1415.

[41] Hansen H A, Rossmeisl J, Nörskov J K. Surface pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT[J]. Phys. Chem. Chem. Phys., 2008, 10(25):3722-3730.
doi: 10.1039/b803956a pmid: 18563233

[42] Wei G F, Fang Y H, Liu Z P. First principles tafel kinetics for resolving key parameters in optimizing oxygen electrocatalytic reduction catalyst[J]. J. Phys. Chem. C, 2012, 116(23):12696-12705.
doi: 10.1021/jp3034616 URL

[43] He Q G, Yang X F, Chen W, Mukerjee S, Koel B, Chen S W. Influence of phosphate anion adsorption on the kinetics of oxygen electroreduction on low index Pt(hkl) single crystals[J]. Phys. Chem. Chem. Phys., 2010, 12(39):12544-12555.
doi: 10.1039/c0cp00433b URL

[44] Fang Y H, Liu Z P. Toward anticorrosion electrodes: site-selectivity and self-acceleration in the electrochemical corrosion of platinum[J]. J. Phys. Chem. C, 2010, 114(9):4057-4062.
doi: 10.1021/jp9111734 URL

[45] Wei G F, Liu Z P. Towards active and stable oxygen reduction cathodes: a density functional theory survey on Pt2M skin alloys[J]. Energy Environ. Sci., 2011, 4(4):1268-1272.
doi: 10.1039/c0ee00762e URL

[46] Wei G F, Liu Z P. Optimum nanoparticles for electrocatalytic oxygen reduction: the size, shape and new design[J]. Phys. Chem. Chem. Phys., 2013, 15(42):18555-18561.
doi: 10.1039/c3cp53758g URL

[47] Leontyev I N, Belenov S V, Guterman V E, Haghi-Ashtiani P, Shaganov A P, Dkhil B. Catalytic activity of carbon-supported Pt nanoelectrocatalysts. Why reducing the size of Pt nanoparticles is not always beneficial[J]. J. Phys. Chem. C, 2011, 115(13):5429-5434.
doi: 10.1021/jp1109477 URL

[48] Fang Y H, Song D D, Li H X, Liu Z P. Structure and activity of potential-dependent Pt(110) surface phases revealed from machine-learning atomic simulation[J]. J. Phys. Chem. C, 2021, 125(20):10955-10963.
doi: 10.1021/acs.jpcc.1c02222 URL

[49] Stamenkovic V R, Fowler B, Mun B S, Wang G, Ross P N, Lucas C A, Markovic N M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site avai-lability[J]. Science, 2007, 315(5811):493-497.
doi: 10.1126/science.1135941 pmid: 17218494

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.