Abstract
Oxygen reduction reaction (ORR) in alkaline electrolytes is an important electrochemical process for metal-air batteries and anion exchange membrane fuel cells (AEMFCs). However, the sluggish kinetics spurs intensive research on searching robust electrocatalysts. Non-precious metal catalysts (NPMCs) that can circumvent the cost and scarcity issues associated with platinum (Pt)-based materials have been pursued and the challenges lie in the performance improvement to rival Pt-based benchmarks. As the composition and structure of the NPMCs have a significant impact on the catalytic performance, precise regulation on the catalyst structure holds great promise to bridge the activity gap between NPMCs and Pt-based benchmarks. In this minireview, we aim to provide an overview of recent progress in the structural regulation on NPMCs towards improved performance. The four typical categories of NPMCs, i.e., metal-free carbon-based materials, metal compounds, metal encapsulated in graphitic layer and atomically dispersed metal-nitrogen-carbon materials, are firstly introduced, where catalytic active sites and catalytic mechanism are highlighted. Subsequently, we summarize the representative structural regulation from a nanoscale to an atomic scale including hierarchically porous structure regulation, interface engineering, defect engineering and atomic pair construction. Special emphasis is placed on the elucidation of the catalytic structure-performance relationship. The origins of activity improvements from these structural regulations are discussed in terms of accelerated mass transfer, increased accessible active sites, tailored electronic states, and synergetic effect between multi-components. Finally, the challenges and opportunities are discussed.
Graphical Abstract
Keywords
oxygen reduction reaction, non-precious metal catalysts, structural regulation
Publication Date
2022-02-28
Online Available Date
2022-01-02
Revised Date
2021-12-02
Received Date
2021-11-01
Recommended Citation
Xue Wang, Li Zhang, Chang-Peng Liu, Jun-Jie Ge, Jian-Bing Zhu, Wei Xing.
Recent Advances in Structural Regulation on Non-Precious Metal Catalysts for Oxygen Reduction Reaction in Alkaline Electrolytes[J]. Journal of Electrochemistry,
2022
,
28(2): 2108501.
DOI: 10.13208/j.electrochem.210850
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss2/2
References
[1] Lewis N S, Nocera D G. Powering the planet: Chemical challenges in solar energy utilization[J]. PNAS, 2006, 103(43):15729-15735.
doi: 10.1073/pnas.0603395103 URL
[2] Arges C G, Ramani V, Pintauro P N. Anion exchange me-mbrane fuel cells[J]. Electrochem. Soc. Interface, 2010, 19(2):31-35.
[3] Cheng F Y, Chen J. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts[J]. Chem. Soc. Rev., 2012, 41(6):2172-2192.
doi: 10.1039/c1cs15228a URL
[4] Nörskov J K, Rossmeisl J, Logadottir A. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. J. Phys. Chem. B, 2004, 108(46):17886-17892.
doi: 10.1021/jp047349j URL
[5] Niu W J, He J Z, Gu B N, Liu M C, Chueh Y L. Opportunities and challenges in precise synjournal of transition metal single‐atom supported by 2D materials as catalysts toward oxygen reduction reaction[J]. Adv. Funct. Mater., 2021, 31(35):2103558.
doi: 10.1002/adfm.v31.35 URL
[6] Liu M M, Wang L L, Zhao K N, Shi S S, Shao Q S, Zhang L, Sun X L, Zhao Y F, Zhang J J. Atomically dispersed metal catalysts for the oxygen reduction reaction: synjournal, characterization, reaction mechanisms and electrochemical energy applications[J]. Energy & Environ Sci., 2019, 12(10):2890-2923.
[7] Wu G, Zelenay P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction[J]. Acc. Chem. Res., 2013, 46(8):1878-1889.
doi: 10.1021/ar400011z URL
[8] Feng Y, Alonso-Vante N. Nonprecious metal catalysts for the molecular oxygen-reduction reaction[J]. Phys. Status Solidi, 2010, 245(9):1792-1806.
doi: 10.1002/pssb.v245:9 URL
[9] Zhu C Z, He L, Fu S F, Dan D, Lin Y H. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures[J]. Chem. Soc. Rev., 2016, 45(3):517-531.
doi: 10.1039/C5CS00670H URL
[10] Gong K P, Du F, Xia Z H, Durstock M, Dai L M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915):760-764.
doi: 10.1126/science.1168049 URL
[11] Zhang L P, Lin C Y, Zhang D T, Gong L L, Zhu Y H, Zhao Z H, Xu Q, Li H J, Xia Z H. Guiding principles for designing highly efficient metal-free carbon catalysts[J]. Adv. Mater., 2019, 31(13):1805252.
doi: 10.1002/adma.v31.13 URL
[12] Daems N, Sheng X, Vankelecom I F J, Pescarmona P P. Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction[J]. J. Mater. Chem. A, 2014, 2(12):4085-4110.
doi: 10.1039/C3TA14043A URL
[13] Quílez-Bermejo J, Morallón E, Cazorla-Amorós D. Metal-free heteroatom-doped carbon-based catalysts for ORR: A critical assessment about the role of heteroatoms[J]. Carbon, 2020, 165:434-454.
doi: 10.1016/j.carbon.2020.04.068 URL
[14] Liang Y Y, Li Y G, Wang H L, Zhou J G, Wang J, Regier T, Dai H J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nat. Mater., 2011, 10(10):780-786.
doi: 10.1038/nmat3087 URL
[15] Odedairo T, Yan X C, Ma J, Jiao Y L, Yao X D, Du A J, Zhu Z H. Nanosheets Co3O4 interleaved with graphene for highly efficient oxygen reduction[J]. ACS Appl. Mater. Interfaces, 2015, 7(38):21373-21380.
doi: 10.1021/acsami.5b06063 URL
[16] Deng D H, Yu L, Chen X Q, Wang G X, Jin L, Pan X L, Deng J, Sun G Q, Bao X H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2013, 52(1):371-375.
doi: 10.1002/anie.201204958 URL
[17] He Y H, Liu S W, Priest C, Shi Q R, Wu G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement[J]. Chem. Soc. Rev., 2020, 49(11):3484-3524.
doi: 10.1039/C9CS00903E URL
[18] Chen M J, He Y H, Spendelow J S, Wu G. Atomically dispersed metal catalysts for oxygen reduction[J]. ACS Energy Lett., 2019, 4(7):1619-1633.
doi: 10.1021/acsenergylett.9b00804 URL
[19] Zhu Y Z, Sokolowski J, Song X C, He Y H, Mei Y, Wu G. Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion[J]. Adv. Energy. Mater., 2020, 10(11):1902844.
doi: 10.1002/aenm.v10.11 URL
[20] Pan Y, Zhang C, Liu Z, Chen C, Li Y D. Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis[J]. Matter, 2020, 2(1):78-110.
doi: 10.1016/j.matt.2019.11.014 URL
[21] Liu D B, He Q, Ding S Q, Song L. Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis[J]. Adv. Energy. Mater., 2020, 10(32):2001482.
doi: 10.1002/aenm.v10.32 URL
[22] Ling T, Jaroniec M, Qiao S Z. Recent progress in engineering the atomic and electronic structure of electrocatalysts via cation exchange reactions[J]. Adv. Mater., 2020, 32(46):2001866.
doi: 10.1002/adma.v32.46 URL
[23] Zhang L P, Xu Q, Niu J B, Xia Z H. Role of lattice defects in catalytic activities of graphene clusters for fuel cells[J]. Phys. Chem. Chem. Phys., 2015, 17(26):16733-16743.
doi: 10.1039/C5CP02014J URL
[24] Jia Y, Zhang L Z, Zhuang L Z, Liu H L, Yan X C, Wang X, Liu J D, Wang J C, Zheng Y R, Xiao Z H, Taran E, Chen J, Yang D J, Zhu Z H, Wang S Y, Dai L M, Yao X D. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping[J]. Nat. Catal., 2019, 2(8):688-695.
doi: 10.1038/s41929-019-0297-4
[25] Hu C G, Paul R, Dai Q B, Dai L M. Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis[J]. Chem. Soc. Rev., 2021, 50(21):11785-11843.
doi: 10.1039/D1CS00219H URL
[26] Gao F, Zhao G L, Yang S, Spivey J J. Nitrogen-doped fullerene as a potential catalyst for hydrogen fuel cells[J]. J. Am. Chem. Soc., 2013, 135(9):3315-3318.
doi: 10.1021/ja309042m URL
[27] Sidik R A, Anderson A B, Subramanian N P, Kumaraguru S P, Popov B N. O2 reduction on graphite and nitrogen-doped graphite: experiment and theory[J]. J. Phys. Chem. B, 2006, 110(4):1787-1793.
doi: 10.1021/jp055150g URL
[28] Xing T, Zheng Y, Li L H, Cowie B C C, Gunzelmann D, Qiao S Z, Huang S M, Chen Y. Observation of active sites for oxygen reduction reaction on nitrogen-doped multilayer graphene[J]. ACS Nano, 2014, 8(7):6856-6862.
pmid: 24882522
[29] Guo D H, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271):361-365.
doi: 10.1126/science.aad0832 URL
[30] Ding W, Wei Z D, Chen S G, Qi X Q, Yang T, Hu J S, Wang D, Wan L-J, Alvi S F, Li L. Space-confinement-induced synjournal of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction[J]. Angew. Chem. Int. Ed., 2013, 52(45):11755-11759.
doi: 10.1002/anie.v52.45 URL
[31] Luo E G, Xiao M L, Ge J J, Liu C P, Xing W. Selectively doping pyridinic and pyrrolic nitrogen into a 3D porous carbon matrix through template-induced edge engineering: enhanced catalytic activity towards the oxygen reduction reaction[J]. J. Mater. Chem. A, 2017, 5(41):21709-21714.
doi: 10.1039/C7TA07608H URL
[32] Silva R, Al-Sharab J, Asefa T. Edge-plane-rich nitrogen-doped carbon nanoneedles and efficient metal-free electrocatalysts[J]. Angew. Chem. Int. Ed., 2012, 51(29):7171-7175.
doi: 10.1002/anie.201201742 URL
[33] Zhao Y, Yang L J, Chen S, Wang X Z, Ma Y W, Wu Q, Jiang Y F, Qian W J, Hu Z. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes?[J]. J. Am. Chem. Soc., 2013, 135(4):1201-1204.
doi: 10.1021/ja310566z pmid: 23317479
[34] Zhu J B, Li K, Xiao M L, Liu C P, Wu Z J, Ge J J, Xing W. Significantly enhanced oxygen reduction reaction performance of N-doped carbon by heterogeneous sulfur incorporation: synergistic effect between the two dopants in metal-free catalysts[J]. J. Mater. Chem. A, 2016, 4(19):7422-7429.
doi: 10.1039/C6TA02419J URL
[35] Chen W, Chen X, Qiao R, Jiang Z, Jiang Z J, Papovi? S, Raleva K, Zhou D. Understanding the role of nitrogen and sulfur doping in promoting kinetics of oxygen reduction reaction and sodium ion battery performance of hollow spherical graphene[J]. Carbon, 2022, 187:230-240.
doi: 10.1016/j.carbon.2021.11.020 URL
[36] Razmjooei F, Singh K P, Song M Y, Yu J S. Enhanced electrocatalytic activity due to additional phosphorous doping in nitrogen and sulfur-doped graphene: A comprehensive study[J]. Carbon, 2014, 78:257-267.
doi: 10.1016/j.carbon.2014.07.002 URL
[37] Xing Z H, Xiao M L, Guo Z L, Yang W S. Colloidal silica assisted fabrication of N,O,S-tridoped porous carbon nanosheets with excellent oxygen reduction performance[J]. Chem. Commun., 2018, 54(32):4017-4020.
doi: 10.1039/C8CC00846A URL
[38] Yang Z, Zhou X M, Jin Z P, Liu Z, Nie H G, Chen X A, Huang S M. A facile and general approach for the direct fabrication of 3D, vertically aligned carbon nanotube array/transition metal oxide composites as non-Pt catalysts for oxygen reduction reactions[J]. Adv. Mater., 2014, 26(19):3156-3161.
doi: 10.1002/adma.201305513 URL
[39] Sun J, Du L, Sun B Y, Han G K, Ma Y L, Wang J J, Huo H, Du C Y, Yin G P. Bifunctional LaMn0.3Co0.7O3 perovskite oxide catalyst for oxygen reduction and evolution reactions: The optimized e(g) electronic structures by ma-nganese dopant[J]. ACS Appl. Mater. Interfaces, 2020, 12(45):24717-24725.
doi: 10.1021/acsami.0c03983 URL
[40] Ren D Z, Ying J, Xiao M L, Deng Y P, Ou J H, Zhu J B, Liu G H, Pei Y, Li S, Jauhar A M, Jin H L, Wang S, Su D, Yu A P, Chen Z W. Hierarchically porous multimetal-based carbon nanorod hybrid as an efficient oxygen catalyst for rechargeable zinc-air batteries[J]. Adv. Funct. Mater., 2020, 30(7):1908167.
doi: 10.1002/adfm.v30.7 URL
[41] Liu H T, Guan J Y, Yang S X, Yu Y H, Shao R, Zhang Z P, Dou M L, Wang F, Xu Q. Metal-organic framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst[J]. Adv. Mater., 2020, 32(36):2003649.
[42] Parra-Puerto A, Ng K L, Fahy K, Goode A E, Ryan M P, Kucernak A. Supported transition metal phosphides: activity survey for HER, ORR, OER, and corrosion resistance in acid and alkaline electrolytes[J]. ACS Catal., 2019, 9(12):11515-11529.
doi: 10.1021/acscatal.9b03359
[43] Liu W W, Ren B H, Zhang W Y, Zhang M W, Li G R, Xiao M L, Zhu J B, Yu A P, Ricardez-Sandoval L, Chen Z W. Defect-enriched nitrogen doped-graphene quantum dots engineered NiCo2S4 nanoarray as high-efficiency bifunctional catalyst for flexible Zn-air battery[J]. Small, 2019, 15(44):1903610.
doi: 10.1002/smll.v15.44 URL
[44] Yu Y D, Zhou J, Sun Z M. Novel 2D Transition-Metal Carbides: Ultrahigh performance electrocatalysts for overall water splitting and oxygen reduction[J]. Adv. Func. Mater., 2020, 30(47):2000570.
doi: 10.1002/adfm.v30.47 URL
[45] Rasaki S A, Shen H, Thomas T, Yang M. Solid-solid separation approach for preparation of carbon-supported cobalt carbide nanoparticle catalysts for oxygen reduction[J]. ACS Appl. Nano. Mater., 2019, 2(6):3662-3670.
doi: 10.1021/acsanm.9b00601 URL
[46] Huang H T, Chang Y, Jia J C, Jia M L, Wen Z H. Understand the Fe3C nanocrystalline grown on rGO and its performance for oxygen reduction reaction[J]. Int. J. Hydrogen Energy, 2020, 45(53):28764-28773.
doi: 10.1016/j.ijhydene.2020.07.226 URL
[47] Wang M, Yang Y S, Liu X, Pu Z H, Kou Z K, Zhu P P, Mu S C. The role of iron nitrides in the Fe-N-C catalysis system towards the oxygen reduction reaction[J]. Nano-scale, 2017, 9(22):7641-7649.
[48] Tian X L, Wang L, Chi B, Xu Y, Zaman S, Qi K, Liu H, Liao S, Xia B Y. Formation of a tubular assembly by ultrathin Ti0.8Co0.2N nanosheets as efficient oxygen reduction electrocatalysts for hydrogen-/metal-air fuel cells[J]. ACS Catal., 2018, 8(10):8970-8975.
doi: 10.1021/acscatal.8b02710 URL
[49] Kreider M E, Gallo A, Back S, Liu Y, Siahrostami S, No-rdlund D, Sinclair R, Norskov J K, King L A, Jaramillo T F. Precious metal-free nickel nitride catalyst for the oxygen reduction raction[J]. ACS Appl. Mater. Interfaces, 2019, 11(30):26863-26871.
doi: 10.1021/acsami.9b07116 URL
[50] Tian Y H, Xu L, Qiu J X, Liu X H, Zhang S Q. Rational design of sustainable transition metal-based bifunctional electrocatalysts for oxygen reduction and evolution reactions[J]. Sustain.Mater.Techno., 2020, 25:e00204.
[51] Wang M Y, Han B H, Deng J J, Jiang Y, Zhou M Y, Lucero M, Wang Y, Chen Y B, Yang Z Z, N'diaye A T, Wang Q, Xu Z C J, Feng Z X. Influence of Fe substitution into LaCoO3 electrocatalysts on oxygen-reduction activity[J]. ACS Appl. Mater. Interfaces, 2019, 11(6):5682-5686.
doi: 10.1021/acsami.8b20780 URL
[52] Surendran S, Shanmugapriya S, Sivanantham A, Shanmugam S, Kalai Selvan R. Electrospun carbon nanofibers encapsulated with NiCoP: A multifunctional electrode for supercapattery and oxygen reduction, oxygen evolution, and hydrogen evolution reactions[J]. Adv. Energy Mater., 2018, 8(20):1800555.
doi: 10.1002/aenm.v8.20 URL
[53] Han X P, Zhang W, Ma X Y, Zhong C, Zhao N Q, Hu W B, Deng Y D. Identifying the activation of bimetallic sites in NiCo2S4@g-C3N4-CNT hybrid electrocatalysts for synergistic oxygen reduction and evolution[J]. Adv. Mater., 2019, 31(18):1808281.
doi: 10.1002/adma.v31.18 URL
[54] Liu W W, Ren B H, Zhang W Y, Zhang M W, Li G R, Xiao M L, Zhu J B, Yu A P, Ricardez-Sandoval L, Chen Z W. Defect-enriched nitrogen doped-graphene quantum dots engineered NiCo2S4 nanoarray as high-efficiency bifunctional catalyst for flexible Zn-air battery[J]. Small, 2019, 15(44):1903610.
doi: 10.1002/smll.v15.44 URL
[55] Strickland K, Elise M W, Jia Q Y, Tylus U, Ramaswamy N, Liang W T, Sougrati M T, Jaouen F, Mukerjee S. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination[J]. Nat. Commun., 2015, 6:7343.
doi: 10.1038/ncomms8343 pmid: 26059552
[56] Varnell J A, Tse E C M, Schulz C E, Fister T T, Haasch R T, Timoshenko J, Frenkel A I, Gewirth A A. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts[J]. Nat. Commun., 2016, 7:12582.
doi: 10.1038/ncomms12582 pmid: 27538720
[57] Chen M X, Zhu M Z, Zuo M, Chu S Q, Zhang J, Wu Y, Liang H W, Feng X L. Identification of catalytic sites for oxygen reduction in metal/nitrogen-doped carbons with encapsulated metal nanoparticles[J]. Angew. Chem. Int. Ed., 2020, 59(4):1627-1633.
doi: 10.1002/anie.v59.4 URL
[58] Chen X Q, Xiao J P, Wang J, Deng D H, Hu Y F, Zhou J G, Yu L, Heine T, Pan X L, Bao X H. Visualizing electronic interactions between iron and carbon by X-ray chemical imaging and spectroscopy[J]. Chem. Sci., 2015, 6(5):3262-3267.
doi: 10.1039/C5SC00353A URL
[59] Hu Y, Jensen J O, Zhang W, Huang Y J, Cleemann LN, Xing W, Bjerrum, N J, Li Q F. Direct synjournal of Fe3C-functionalized graphene by high temperature autoclave pyrolysis for oxygen reduction[J]. ChemSusChem, 2014, 7(8):2099-2113.
doi: 10.1002/cssc.201402183 URL
[60] Aijaz A, Masa J, Rsler C, Antoni H, Fischer R A, Schuhmann W, Muhler M. MOF-templated assembly approach for Fe3C nanoparticles encapsulated in bamboo-like N-doped CNTs: highly efficient oxygen reduction under acidic and basic conditions[J]. Chem. Eur. J., 2017, 23(50):12125-12130.
doi: 10.1002/chem.201701389 URL
[61] Kong A, Zhang Y, Chen Z, Chen A, Li C, Wang H, Shan Y. One-pot synthesized covalent porphyrin polymer-derived core-shell Fe3C@carbon for efficient oxygen electroreduction[J]. Carbon, 2017, 116:606-614.
doi: 10.1016/j.carbon.2017.02.046 URL
[62] Hu Y, Jensen J O, Zhang W, Cleemann L N, Xing W, Bjerrum N J, Li Q F. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts[J]. Angew. Chem. Int. Ed., 2014, 53(14):3675-3679.
doi: 10.1002/anie.v53.14 URL
[63] Zhu J B, Xiao M L, Liu C P, Ge J J, St-Pierre J, Xing W. Growth mechanism and active site probing of Fe3C@N-doped carbon nanotubes/C catalysts: guidance for building highly efficient oxygen reduction electrocatalysts[J]. J. Mater. Chem. A, 2015, 3(43):21451-21459.
doi: 10.1039/C5TA06181D URL
[64] Xiao M L, Zhu J B, Feng L G, Liu C P, Xing W. Meso/Macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions[J]. Adv. Mater., 2015, 27(15):2521-2527.
doi: 10.1002/adma.201500262 URL
[65] Nandan R, Pandey P, Gautam A. Atomic Arrangement Modulation in CoFe nanoparticles encapsulated in N-doped carbon nanostructures for efficient oxygen reduction reaction[J]. ACS Appl. Mater. Interfaces, 2021, 13(3):3771-3781.
doi: 10.1021/acsami.0c16937 URL
[66] Lv C C, Liang B L, Li K X, Zhao Y, Sun H W. Boosted activity of graphene encapsulated CoFe alloys by blending with activated carbon for oxygen reduction reaction[J]. Biosens. Bioelectron., 2018, 117:802-809.
doi: 10.1016/j.bios.2018.07.020 URL
[67] Liu Y, Wu X, Guo X, Lee K, Sun Q, Li X, Zhang C, Wang Z, Hu J, Zhu Y, Leung M K H, Zhu Z. Modulated FeCo nanoparticle in situ growth on the carbon matrix for high-performance oxygen catalysts[J]. Mater. Today Energy, 2021, 19:100610.
[68] Hou Y, Cui S M, Wen Z H, Guo X R, Feng X L, Chen J H. Electrocatalysis: Strongly coupled 3D hybrids of N-doped porous carbon nanosheet/CoNi alloy-encapsulated carbon nanotubes for enhanced electrocatalysis[J]. Small, 2015, 11(44):5939.
doi: 10.1002/smll.201570267 URL
[69] Niu L J, Liu G H, Li Y F, An J W, Zhao B Y, Yang J S, Qu D, Wang X Y, An L, Sun Z C. CoNi alloy nanoparticles encapsulated in N-doped graphite carbon nanotubes as an efficient electrocatalyst for oxygen reduction reaction in an alkaline medium[J]. ACS Sustainable Chem. Eng., 2021, 9(24):8207-8213.
doi: 10.1021/acssuschemeng.1c02098 URL
[70] Zhu J B, Xiao M L, Zhang Y L, Jin Z, Peng Z Q, Liu C P, Chen S L, Ge J J, Xing W. Metal-organic framework-induced synjournal of ultrasmall encased NiFe nanoparticles coupling with graphene as an efficient oxygen electrode for a rechargeable Zn-air battery[J]. ACS Catal., 2016, 6(10):6335-6342.
doi: 10.1021/acscatal.6b01503 URL
[71] Wang Z, Ang J M, Liu J, Ma X, Kong G H, Zhang Y F, Yan T, Lu X H. FeNi alloys encapsulated in N-doped CNTs-tangled porous carbon fibers as highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable zinc-air battery[J]. Appl. Catal. B: Environ., 2019, 263:118344.
doi: 10.1016/j.apcatb.2019.118344 URL
[72] Niu H J, Chen S S, Feng J J, Zhang L, Wang A J. Assembled hollow spheres with CoFe alloyed nanocrystals encapsulated in N, P-doped carbon nanovesicles: An ultra-stable bifunctional oxygen catalyst for rechargeable Zn-air battery[J]. J. Power Sources, 2020, 475:228594.
doi: 10.1016/j.jpowsour.2020.228594 URL
[73] Dong Z, Li M X, Zhang W L, Liu Y J, Wang Y, Qin C L, Yu L T, Yang J, Zhang X, Dai X P. Cobalt nanoparticles embedded in N, S Co-doped carbon towards oxygen reduction reaction derived by in-situ reducing cobalt sulfide[J]. ChemCatChem, 2019, 11(24):6039-6050.
doi: 10.1002/cctc.v11.24 URL
[74] Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nat. Chem., 2011, 3(8):634-641.
doi: 10.1038/nchem.1095 URL
[75] Lefevre M, Proietti E, Jaouen F, Dodelet J P. Iron-based catalysts with improved oxygen reduction activity in poly-mer electrolyte fuel cells[J]. Science, 2009, 324(5923):71-74.
doi: 10.1126/science.1170051 URL
[76] Chen Y J, Ji S F, Wang Y G, Dong J C, Chen W X, Li Z, Shen R A, Zheng L R, Zhuang Z B, Wang D S, Li Y D. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2017, 56(24):6937-6941.
doi: 10.1002/anie.201702473 URL
[77] Zhao X L, Shao L, Wang Z M, Chen H B, Yang H P, Zeng L. In situ atomically dispersed Fe doped metal-organic framework on reduced graphene oxide as bifunctional electrocatalyst for Zn-air batteries[J]. J. Mater. Chem. C, 2021, 9(34):11252-11260.
doi: 10.1039/D1TC02729H URL
[78] Zhao X, Shao L, Wang Z, Chen H, Yang H, Zeng L. In situ atomically dispersed Fe doped metal-organic framework on reduced graphene oxide as bifunctional electrocatalyst for Zn-air batteries[J]. J. Mater. Chem. C, 2021, 9(34):11252-11260.
doi: 10.1039/D1TC02729H URL
[79] Gong X F, Zhu J B, Li J Z, Gao R, Zhou Q Y, Zhang Z, Dou H Z, Zhao L, Sui X L, Cai J J, Zhang Y L, Liu B, Hu Y F, Yu A P, Sun S H, Wang Z B, Chen Z W. Self-templated hierarchically porous carbon nanorods embedded with atomic Fe-N4 active sites as efficient oxygen reduction electrocatalysts in Zn-air batteries[J]. Adv. Funct. Mater., 2021, 31(8):2008085.
doi: 10.1002/adfm.v31.8 URL
[80] Fu X G, Jiang G P, Wen G B, Gao R, Li S, Li M, Zhu J
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons