•  
  •  
 

Corresponding Author

Jian-Bing Zhu(zjb@ciac.ac.cn);
Wei Xing(xingwei@ciac.ac.cn)

Abstract

Oxygen reduction reaction (ORR) in alkaline electrolytes is an important electrochemical process for metal-air batteries and anion exchange membrane fuel cells (AEMFCs). However, the sluggish kinetics spurs intensive research on searching robust electrocatalysts. Non-precious metal catalysts (NPMCs) that can circumvent the cost and scarcity issues associated with platinum (Pt)-based materials have been pursued and the challenges lie in the performance improvement to rival Pt-based benchmarks. As the composition and structure of the NPMCs have a significant impact on the catalytic performance, precise regulation on the catalyst structure holds great promise to bridge the activity gap between NPMCs and Pt-based benchmarks. In this minireview, we aim to provide an overview of recent progress in the structural regulation on NPMCs towards improved performance. The four typical categories of NPMCs, i.e., metal-free carbon-based materials, metal compounds, metal encapsulated in graphitic layer and atomically dispersed metal-nitrogen-carbon materials, are firstly introduced, where catalytic active sites and catalytic mechanism are highlighted. Subsequently, we summarize the representative structural regulation from a nanoscale to an atomic scale including hierarchically porous structure regulation, interface engineering, defect engineering and atomic pair construction. Special emphasis is placed on the elucidation of the catalytic structure-performance relationship. The origins of activity improvements from these structural regulations are discussed in terms of accelerated mass transfer, increased accessible active sites, tailored electronic states, and synergetic effect between multi-components. Finally, the challenges and opportunities are discussed.

Graphical Abstract

Keywords

oxygen reduction reaction, non-precious metal catalysts, structural regulation

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Date

2022-02-28

Online Available Date

2022-01-02

Revised Date

2021-12-02

Received Date

2021-11-01

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.