•  
  •  
 

Authors

Li-Hua Zhang, 1. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;2. Petrochemical Catalyst Lab., Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina Company Limited, Lanzhou 730060, China;
Hong-Yuan Chuai, 1. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;Follow
Hai Liu, 1. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
Qun Fan, 1. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
Si-Yu Kuang, 1. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
Sheng Zhang, 1. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;3. Zhejiang Institute of Tianjin University, Ningbo 315201, Zhejiang, China;Follow
Xin-Bin Ma, 1. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;3. Zhejiang Institute of Tianjin University, Ningbo 315201, Zhejiang, China;

Corresponding Author

Hong-Yuan Chuai(chuaihongyuan@tju.edu.cn);
Sheng Zhang(sheng.zhang@tju.edu.cn)

Abstract

Water splitting is a promising technology to produce clean hydrogen if powered by renewable energies, where oxygen evolution is the rate determining step at an anode. Here we adjust the different crystal planes of the cobalt oxides catalyst to expose more effective active sites through a hydrothermal process, so as to improve the reaction activity for oxygen evolution. The samples were well characterized by TEM, SEM and XRD. Among the three synthetic crystal planes (100), (111) and (110) of spinel cobalt oxides, the (100) crystal plane has the highest intrinsic activity. Combining in-situ infrared and DFT calculations, we observed that the oxygen evolution reaction reached the lowest energy barrier on the (100) plane of the cobalt oxide crystal. Further XPS analysis showed that the highest Co3+/Co2+ ratio was observed on the surface of the nanocube samples, indicating that Co3+ is a more active site for oxygen evolution catalytic activity.

Graphical Abstract

Keywords

water splitting, oxygen evolution, spinel cobalt oxide, facet dependent, nanocubes

Publication Date

2022-02-28

Online Available Date

2022-01-02

Revised Date

2021-11-30

Received Date

2021-10-25

References

[1] Jamesh M I, Sun X M. Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting - A review[J]. J. Power Sources, 2018, 400:31-68.
doi: 10.1016/j.jpowsour.2018.07.125 URL

[2] Jiang H, Gu J X, Zheng X S, Liu M, Qiu X Q, Wang L B, Li W Z, Chen Z F, Ji X B, Li J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER[J]. Energy Environ. Sci., 2019, 12(1):322-333.
doi: 10.1039/C8EE03276A URL

[3] Jahan M, Liu Z L, Loh K P. A Graphene oxide and coppercentered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR[J]. Adv. Funct. Mater., 2013, 23(43):5363-5372.
doi: 10.1002/adfm.v23.43 URL

[4] Zhang L H, Fan Q, Li K, Zhang S, Ma X B. First-row transition metal oxide oxygen evolution electrocatalysts: regulation strategies and mechanistic understandings[J]. Sustain. Energy Fuels, 2020, 4(11):5417-5432.
doi: 10.1039/D0SE01087A URL

[5] Jamesh M I, Harb M. Tuning the electronic structure of the earth-abundant electrocatalysts for oxygen evolution reaction (OER) to achieve efficient alkaline water splitting - A review[J]. J. Energy Chem., 2021, 56:299-342.
doi: 10.1016/j.jechem.2020.08.001 URL

[6] Zhang S, Fan Q, Xia R, Meyer T J. CO2 reduction: from homogeneous to heterogeneous electrocatalysis[J]. Accounts Chem. Res., 2020, 53(1):255-264.
doi: 10.1021/acs.accounts.9b00496 URL

[7] Liu H, Su Y Q, Kuang S Y, Hensen E J M, Zhang S, Ma X B. Highly efficient CO2 electrolysis within a wide operation window using octahedral tin oxide single crystals[J]. J. Mater. Chem. A, 2021, 9(12):7848-7856.
doi: 10.1039/D1TA00285F URL

[8] Karmakar A, Karthick K, Sankar S S, Kumaravel S, Madhu R, Kundu S. A vast exploration of improvising synthetic strategies for enhancing the OER kinetics of LDH structures: a review[J]. J. Mater. Chem. A, 2021, 9(3):1314-1352.
doi: 10.1039/D0TA09788H URL

[9] Duan Y, Sun S N, Sun Y M, Xi S B, Chi X, Zhang Q H, Ren X, Wang J X, Ong S J H, Du Y H, Gu L, Grimaud A, Xu Z C J. Mastering surface reconstruction of metastable spinel oxides for better water oxidation[J]. Adv. Mater., 2019, 31(12):1807898.
doi: 10.1002/adma.v31.12 URL

[10] Sun Y M, Liao H B, Wang J R, Chen B, Sun S N, Ong S J H, Xi S B, Diao C Z, Du Y H, Wang J O, Breese M B H, Li S Z, Zhang H, Xu Z C J. Author Correction: Covalency competition dominates the water oxidation structure-activity relationship on spinel oxides[J]. Nat. Catal., 2020, 3(11):959.
doi: 10.1038/s41929-020-00548-z URL

[11] Reier T, Oezaslan M, Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt Catalysts: A comparative study of nanoparticles and bulk materials[J]. ACS Catal., 2012, 2(8):1765-1772.
doi: 10.1021/cs3003098 URL

[12] Acedera R A E, Gupta G, Mamlouk M, Balela M D L. Solution combustion synjournal of porous Co3O4 nanoparticles as oxygen evolution reaction (OER) electrocatalysts in alkaline medium[J]. J. Alloy. Compd., 2020, 836:154919.
doi: 10.1016/j.jallcom.2020.154919 URL

[13] Wang C X, Shi P H, Cai X D, Xu Q J, Zhou X J, Zhou X L, Yang D, Fan J C, Min Y L, Ge H H, Yao W F. Synergistic effect of Co3O4 nanoparticles and graphene as catalysts for peroxymonosulfate-based orange II degradation with high oxidant utilization efficiency[J]. J. Phys. Chem. C, 2016, 120(1):336-344.
doi: 10.1021/acs.jpcc.5b10032 URL

[14] Xiao Z, Huang Y C, Dong C L, Xie C, Liu Z J, Du S Q, Chen W, Yan D F, Tao L, Shu Z W, Zhang G H, Duan H G, Wang Y Y, Zou Y Q, Chen R, Wang S Y. Operando identification of the dynamic behavior of oxygen vacancyrich Co3O4 for oxygen evolution reaction[J]. J. Am. Chem. Soc., 2020, 142(28):12087-12095.
doi: 10.1021/jacs.0c00257 URL

[15] Peng Y, Hajiyani H, Pentcheva R. Influence of Fe and Ni Doping on the OER Performance at the Co3O4 (001) Surface: Insights from DFT+ U Calculations[J]. ACS Catal., 2021, 11(9):5601-5613.
doi: 10.1021/acscatal.1c00214 URL

[16] Xu L, Jiang Q Q, Xiao Z H, Li X Y, Huo J, Wang S Y, Dai L M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2016, 128(17):5363-5367.
doi: 10.1002/ange.201600687 URL

[17] Zhang Y X, Ding F, Deng C, Zhen S Y, Li X Y, Xue Y F, Yan Y M, Sun K N. Crystal plane-dependent electrocatalytic activity of Co3O4 toward oxygen evolution reaction[J]. Catal. Commun., 2015, 67:78-82.
doi: 10.1016/j.catcom.2015.04.012 URL

[18] Liu L, Jiang Z Q, Fang L, Xu H T, Zhang H J, Gu X, Wang Y. Probing the crystal plane effect of Co3O4 for enhanced electrocatalytic performance toward efficient overall water splitting[J]. ACS Appl. Mater. Inter., 2017, 9(33):27736-27744.
doi: 10.1021/acsami.7b07793 URL

[19] Liu Q F, Chen Z P, Yan Z, Wang Y, Wang E D, Wang S, Wang S D, Sun G Q. Crystal-plane-dependent activity of spinel Co3O4 towards water splitting and the oxygen reduction reaction[J]. ChemElectroChem, 2018, 5(7):1080-1086.
doi: 10.1002/celc.201701302 URL

[20] Zhu K Y, Zhu X F, Yang W S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts[J]. Angew. Chem. Int. Ed., 2019, 58(5):1252-1265.
doi: 10.1002/anie.201802923 URL

[21] Xiao X L, Liu X F, Zhao H, Chen D F, Liu F Z, Xiang J H, Hu Z B, Li Y D. Facile shape control of Co3O4 and the effect of the crystal plane on electrochemical performance[J]. Adv. Mater., 2012, 24(42):5762-5766.
doi: 10.1002/adma.v24.42 URL

[22] Zhang J J, Wang H H, Zhao T J, Zhang K X, Wei X, Li X H, Hirano S I, Chen J S. Oxygen vacancy engineering of Co3O4 nanocrystals through coupling with metal support for water oxidation[J]. ChemSusChem, 2017, 10(14):2875-2879.
doi: 10.1002/cssc.v10.14 URL

[23] He D, Song X Y, Li W Q, Tang C Y, Liu J C, Ke Z J, Jiang C Z, Xiao X H. Active electron density modulation of Co3O4-based catalysts enhances their oxygen evolution performance[J]. Angew. Chem. In.t Ed., 2020, 132(17):6996-7002.
doi: 10.1002/ange.v132.17 URL

[24] Kumar K, Canaff C, Rousseau J, Arrii-Clacens S, Napporn T W, Habrioux A, Kokoh K B. Effect of the oxide-carbon heterointerface on the activity of Co3O4/NRGO nano-composites toward ORR and OER[J]. J. Phys. Chem. C, 2016, 120(15):7949-7958.
doi: 10.1021/acs.jpcc.6b00313 URL

[25] Tang D, Ma Y, Liu Y, Wang K K, Liu Z, Li W Z, Li J. Amorphous three-dimensional porous Co3O4 nanowire network toward superior OER catalysis by lithium-induced[J]. J. Alloy Compd., 2021, 893:162287.
doi: 10.1016/j.jallcom.2021.162287 URL

[26] Zhou X M, Xia Z M, Tian Z M, Ma Y Y, Qu Y Q. Ultrathin porous Co3O4 nanoplates as highly efficient oxygen evolution catalysts[J]. J. Mater. Chem. A, 2015, 3(15):8107-8114.
doi: 10.1039/C4TA07214F URL

[27] McCrory C C L, Jung S, Peters J C, Jaramillo T F. Bench-marking heterogeneous electrocatalysts for the oxygen evolution reaction[J]. J. Am. Chem. Soc., 2013, 135(45):16977-16987.
doi: 10.1021/ja407115p URL

[28] Ma T Y, Dai S, Jaroniec M, Qiao S Z. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes[J]. J. Am. Chem. Soc., 2014, 136(39):13925-13931.
doi: 10.1021/ja5082553 URL

[29] Song K, Cho E, Kang Y M. Morphology and active-site engineering for stable round-trip efficiency Li-O2 batteries: A search for the most active catalytic site in Co3O4[J]. ACS Catal., 2015, 5(9):5116-5122.
doi: 10.1021/acscatal.5b01196 URL

[30] Yao Y C, Hu S L, Chen W X, Huang Z Q, Wei W C, Yao T, Liu R R, Zang K T, Wang X Q, Wu G, Yuan W J, Yuan T W, Zhu B Q, Liu W, Li Z J, He D S, Xue Z G, Wang Y, Zheng X S, Dong J C, Chang C R, Chen Y X, Hong X, Luo J, Wei S Q, Li W X, Strasser P, Wu Y E, Li Y D. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis[J]. Nat. Catal., 2019, 2(4):304-313.
doi: 10.1038/s41929-019-0246-2 URL

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.