Abstract
In electrochemistry, perhaps also in other time-honored scientific disciplines, knowledge labelled classical usually attracts less attention from beginners, especially those pressured or tempted to quickly jam into research fronts that are labelled, not always aptly, modern. In fact, it is a normal reaction to the burden of history and the stress of today. Against this context, accessible tutorials on classical knowledge are useful, should some realize that taking a step back could be the best way forward. This is the driving force of this article themed at physicochemical modelling of the electric (electrochemical) double layer (EDL). We begin the exposition with a rudimentary introduction to key concepts of the EDL, followed by a brief introduction to its history. We then elucidate how to model the EDL under equilibrium, using firstly the orthodox Gouy-Chapman-Stern model, then the symmetric Bikerman model, and finally the asymmetric Bikerman model. Afterwards, we exemplify how to derive a set of equations governing the EDL dynamics under nonequilibrium conditions using a unifying grand-potential approach. In the end, we expound on the definition and mathematical foundation of electrochemical impedance spectroscopy (EIS), and present a detailed derivation of an EIS model for a simple EDL. We try to avoid the omission of supposedly ‘trivial’ information in the derivation of models, hoping that it can ease the access to the wonderful garden of physical electrochemistry.
Graphical Abstract
Keywords
electric double layer, equilibrium, nonequilibrium, electrochemical impedance spectroscopy
Publication Date
2022-02-28
Online Available Date
2021-12-18
Revised Date
2021-12-07
Received Date
2021-10-26
Recommended Citation
Lu-Lu Zhang, Chen-Kun Li, Jun Huang.
A Beginners’ Guide to Modelling of Electric Double Layer under Equilibrium, Nonequilibrium and AC Conditions[J]. Journal of Electrochemistry,
2022
,
28(2): 2108471.
DOI: 10.13208/j.electrochem.210847
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss2/4
References
[1] Huang J, Chen S L, Eikerling M. Grand-canonical model of electrochemical double layers from a hybrid density-potential functional[J]. J. Chem. Theory Comput., 2021, 17(4):2417-2430.
doi: 10.1021/acs.jctc.1c00098 URL
[2] Trasatti S, Lust E. The potential of zero charge, in Modern aspects of electrochemistry[M]. White R E, Bockris J O’ M, Conway B E, Editors, 1999, Springer US: Boston, MA. 1-215.
[3] Schmickler W, Guidelli R. The partial charge transfer[J]. Electrochim. Acta, 2014, 127:489-505.
doi: 10.1016/j.electacta.2014.02.057 URL
[4] Huang J, Malek A, Zhang J B, Eikerling M. Non-monotonic surface charging behavior of platinum: A paradigm change[J]. J. Phys. Chem. C, 2016, 120(25):13587-13595.
doi: 10.1021/acs.jpcc.6b03930 URL
[5] Huang J, Zhou T, Zhang J B, Eikerling M. Double layer of platinum electrodes: Non-monotonic surface charging phenomena and negative double layer capacitance[J]. J. Chem. Phys., 2018, 148(4):044704.
doi: 10.1063/1.5010999 URL
[6] Helmholtz H V. Studien über electrische grenzschichten[J]. Ann. Phys., 1879, 243(7):337-382.
doi: 10.1002/(ISSN)1521-38889 URL
[7] Chapman D L, Li. A contribution to the theory of electrocapillarity[J]. Philos. Mag., 1913, 25(148):475-481.
doi: 10.1080/14786440408634187 URL
[8] Gouy G. Sur la constitution de la charge electrique a la surface d’un electrolyte.[J]. J. Phys. Theor. Appl., 1910, 9(1):457-468.
doi: 10.1051/jphystap:019100090045700 URL
[9] Stern O. Zur theorie der elektrolytischen doppelschicht[J]. Ber. Bunsenges. Phys. Chem., 1924, 30(21-22):508-516.
[10] Bikerman J J. Xxxix. Structure and capacity of electrical double layer[J]. Lond. Edinb. Dubl. Phil. Mag., 1942, 33(220):384-397.
[11] Grahame D C. The electrical double layer and the theory of electrocapillarity[J]. Chem. Rev., 1947, 41(3):441-501.
doi: 10.1021/cr60130a002 URL
[12] Lobenz W, Salie G. Potentialabhängigkeit und ladungsübergangskoeffizienten der tl/tl+-reaktion[J]. Z. Phys. Chem., 1961, 29(5):408-412.
doi: 10.1524/zpch.1961.29.5_6.408 URL
[13] Grahame D C. Components of charge and potential in the non-diffuse region of the electrical double layer: Potassium iodide solutions in contact with mercury at 25°1[J]. J. Am. Chem. Soc., 1958, 80(16):4201-4210.
doi: 10.1021/ja01549a022 URL
[14] Mott N F, Watts-Tobin R J. The interface between a metal and an electrolyte[J]. Electrochim. Acta, 1961, 4(2):79-107.
doi: 10.1016/0013-4686(61)80009-1 URL
[15] Mott N F, Parsons R, Watts-Tobin R J. The capacity of a mercury electrode in electrolytic solution[J]. Philos. Mag., 1962, 7(75):483-493.
doi: 10.1080/14786436208212180 URL
[16] Watts-tobin R J. The interface between a metal and an electrolytic solution[J]. Philos. Mag., 1961, 6(61):133-153.
doi: 10.1080/14786436108238358 URL
[17] Schmickler W. Electronic effects in the electric double layer[J]. Chem. Rev., 1996, 96(8):3177-3200.
pmid: 11848857
[18] Guidelli R, Schmickler W. Recent developments in models for the interface between a metal and an aqueous solution[J]. Electrochim. Acta, 2000. 45(15):2317-2338.
doi: 10.1016/S0013-4686(00)00335-2 URL
[19] Trasatti S. Effect of the nature of the metal on the dielectric properties of polar liquids at the interface with electrodes. A phenomenological approach[J]. J. Electroanal. Chem. Interfacial Electrochem., 1981, 123(1):121-139.
doi: 10.1016/S0022-0728(81)80047-2 URL
[20] Badiali J P, Rosinberg M L, Vericat F, Blum L. A microscopic model for the liquid metal-ionic solution interface[J]. J. Electro-Anal. Chem., 1983, 158(2):253-267.
doi: 10.1016/S0022-0728(83)80611-1 URL
[21] Kornyshev A A. Metal electrons in the double layer theory[J]. Electrochim. Acta, 1989, 34(12):1829-1847.
doi: 10.1016/0013-4686(89)85070-4 URL
[22] Schmickler W. A jellium-dipole model for the double layer[J]. J. Electroanal. Chem., 1983, 150(1):19-24.
doi: 10.1016/S0022-0728(83)80185-5 URL
[23] Lundqvist S, March N H. Theory of the inhomogeneous electron gas[M]//Physics of solids and liquids, Springer Science & Business Media. XIV, Plenum Press, New York, 1983: 396.
[24] Price D L, Halley J W. Molecular dynamics, density functional theory of the metal-electrolyte interface[J]. J. Chem. Phys., 1995, 102(16):6603-6612.
doi: 10.1063/1.469376 URL
[25] Otani M, ugino O. First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach[J]. Phys. Rev. B, 2006, 73(11):115407.
doi: 10.1103/PhysRevB.73.115407 URL
[26] Petrosyan S A, Briere J F, Roundy D, Arias T A. Joint density-functional theory for electronic structure of solvated systems[J]. Phys. Rev. B, 2007, 75(20):205105.
doi: 10.1103/PhysRevB.75.205105 URL
[27] Letchworth-Weaver K, Arias T A. Joint density functional theory of the electrode-electrolyte interface: Application to fixed electrode potentials, interfacial capacitances, and potentials of zero charge[J]. Phys. Rev. B, 2012, 86(7):075140.
doi: 10.1103/PhysRevB.86.075140 URL
[28] Sundararaman R, Goddard W A, Arias T A. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry[J]. J. Chem. Phys., 2017, 146(11):114104.
doi: 10.1063/1.4978411 URL
[29] Jinnouchi R, Anderson A B. Electronic structure calculations of liquid-solid interfaces: Combination of density functional theory and modified Poisson-Boltzmann theory[J]. Phys. Rev. B, 2008, 77(24):245417.
doi: 10.1103/PhysRevB.77.245417 URL
[30] Mathew K, Sundararaman R, Letchworth-Weaver K, Arias T A, Hennig R G. Implicit solvation model for densityfunctional study of nanocrystal surfaces and reaction pathways[J]. J. Chem. Phys., 2014, 140(8):084106.
doi: 10.1063/1.4865107 URL
[31] Mathew K, Kolluru V S C, Mula S, Steinmann S N, Hennig R G. Implicit self-consistent electrolyte model in plane-wave density-functional theory[J]. J. Chem. Phys., 2019, 151(23):234101.
doi: 10.1063/1.5132354 URL
[32] Nishihara S, Otani M. Hybrid solvation models for bulk, interface, and membrane: Reference interaction site methods coupled with density functional theory[J]. Phys. Rev. B, 2017, 96(11):115429.
doi: 10.1103/PhysRevB.96.115429 URL
[33] Nattino F, Truscott M, Marzari N, Andreussi O. Continuum models of the electrochemical diffuse layer in electronicstructure calculations[J]. J. Chem. Phys., 2018, 150(4):041722.
doi: 10.1063/1.5054588 URL
[34] Hörmann N G, Andreussi O, Marzari N. Grand canonical simulations of electrochemical interfaces in implicit solvation models[J]. J. Chem. Phys., 2019, 150(4):041730.
doi: 10.1063/1.5054580 URL
[35] Melander M M, Kuisma M J, Christensen T E K, Honkala K. Grand-canonical approach to density functional theory of electrocatalytic systems: Thermodynamics of solid-liquid interfaces at constant ion and electrode potentials[J]. J. Chem. Phys., 2018, 150(4):041706.
doi: 10.1063/1.5047829 URL
[36] Le J B, Iannuzzi M, Cuesta A, Cheng J. Determining potentials of zero charge of metal electrodes versus the standard hydrogen electrode from density-functional-theory-based molecular dynamics[J]. Phys. Rev. Lett., 2017, 119(1):016801.
doi: 10.1103/PhysRevLett.119.016801 URL
[37] Sakong S, Groβ A. The electric double layer at metalwater interfaces revisited based on a charge polarization scheme[J]. J. Chem. Phys., 2018, 149(8):084705.
doi: 10.1063/1.5040056 URL
[38] Sakong S, Groβ A. Water structures on a Pt(111) electrode from ab initio molecular dynamic simulations for a variety of electro-chemical conditions[J]. Phys. Chem. Chem. Phys., 2020, 22(19):10431-10437.
doi: 10.1039/c9cp06584a pmid: 31976502
[39] Le J B, Chen A, Li L, Xiong J F, Lan J G, Liu Y P, Iannuzzi M, Cheng J. Modeling electrified Pt(111)-Had/water interfaces from ab initio molecular dynamics[J]. JACS Au, 2021, 1(5):569-577.
doi: 10.1021/jacsau.1c00108 URL
[40] Huang J, Li P, Chen S L. Potential of zero charge and surface charging relation of metal-solution interphases from a constant-poten-tial Jellium-Poisson-Boltzmann model[J]. Phys. Rev. B, 2020, 101(12):125422.
doi: 10.1103/PhysRevB.101.125422 URL
[41] Huang J. Hybrid density-potential functional theory of electric double layers[J]. Electrochim. Acta, 2021, 389:138720.
doi: 10.1016/j.electacta.2021.138720 URL
[42] Karasiev V V, Trickey S B. Chapter nine-frank discussion of the status of ground-state orbital-free DFT[M]//Advances in quantum chemistry. Sabin J R, Cabrera-Trujillo R, Editors, Academic Press, 2015: 221-245.
[43] Wang Y A, Carter E A. Orbital-free kinetic-energy density functional theory, in Theoretical methods in condensed phase chemistry[M]. Schwartz S D, Editor, Springer Netherlands: Dordrecht, 2002: 117-184.
[44] Gavini V, Bhattacharya K, Ortiz M. Quasi-continuum orbital-free density-functional theory: A route to multi-million atom non-periodic DFT calculation[J]. J. Mech. Phys. Solids, 2007, 55(4):697-718.
doi: 10.1016/j.jmps.2007.01.012 URL
[45] Nightingale E R. Phenomenological theory of ion solvation. Effective radii of hydrated ions[J]. J. Phys. Chem., 1959, 63(9):1381-1387.
doi: 10.1021/j150579a011 URL
[46] Bazant M Z, Kilic M S, Storey B D, Ajdari A. Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions[J]. Adv. Colloid Interface, 2009, 152(1-2):48-88.
doi: 10.1016/j.cis.2009.10.001 URL
[47] Kornyshev A A. Double-layer in ionic liquids: Paradigm change?[J]. J. Phys. Chem. B, 2007, 111(20):5545-5557.
doi: 10.1021/jp067857o URL
[48] Zhang Y F, Huang J. Treatment of ion-size asymmetry in lattice-gas models for electrical double layer[J]. J. Phys. Chem. C, 2018, 122(50):28652-28664.
doi: 10.1021/acs.jpcc.8b08298 URL
[49] Zhang L L, Cai J, Chen Y X, Huang J. Modelling electrocatalytic reactions with a concerted treatment of multistep electron transfer kinetics and local reaction conditions[J]. J. Phys. Condens. Mat., 2021, 33(50):504002.
doi: 10.1088/1361-648X/ac26fb URL
[50] Zhang Z M, Gao Y, Chen S L, Huang J. Understanding dynamics of electrochemical double layers via a modified concentrated solution theory[J]. J. Electrochem. Soc., 2019. 167(1):013519.
doi: 10.1149/2.0192001JES URL
[51] Budkov Y A. Nonlocal statistical field theory of dipolar particles in electrolyte solutions[J]. J. Phys. Condens. Mat., 2018, 30(34):344001.
doi: 10.1088/1361-648X/aad3ee URL
[52] Budkov Y A. Statistical field theory of ion-molecular solutions[J]. Phys. Chem. Chem. Phys., 2020, 22(26):14756-14772.
doi: 10.1039/d0cp02432e pmid: 32578625
[53] Huang J. Confinement induced dilution: Electrostatic screening length anomaly in concentrated electrolytes in confined space[J]. J. Phys. Chem. C, 2018, 122(6):3428-3433.
doi: 10.1021/acs.jpcc.7b11093 URL
[54] Gao Y, Huang J, Liu Y W, Yan J W, Mao B W, Chen S L. Ion-vacancy coupled charge transfer model for ion transport in con-centrated solutions[J]. Sci. China. Chem., 2019, 62(4):515-520.
doi: 10.1007/s11426-018-9423-8
[55] Bard A J, Faulkner L R. Electrochemical methods: Fundamentals and applications[M]. 2nd ed. Russ. J. Electrochem., New York: Wiley, 2002, 38:1364-1365.
[56] Bockris J O’ m, Devanathan M A V, Müller K. On the structure of charged interfaces[J]. Roy. Soc. A, 1963, 274(541):55-79.
<[57] Huang J, Li Z, Liaw B Y, Zhang J B. Graphical analysis of electrochemical impedance spectroscopy data in bode and Nyquist representations[J]. J. Power Sources, 2016, 309:82-98.
doi: 10.1016/j.jpowsour.2016.01.073 URL
[58] Li C K, Huang J. Impedance response of electrochemical interfaces: Part i. Exact analytical expressions for ideally polarizable electrodes[J]. J. Electrochem. Soc., 2021, 167(16):166517.
doi: 10.1149/1945-7111/abd450 URL
[59] Klotz D, Schönleber M, Schmidt J, Ivers-Tiffée E. New approach for the calculation of impedance spectra out of time domain data[J]. Electrochim. Acta, 2011, 56(24):8763-8769.
doi: 10.1016/j.electacta.2011.07.096 URL
[60] Nussbaumer H J. The fast fourier transform, in fast fourier transform and convolution algorithms[M]. Nussbaumer H J, Editor, Springer Berlin Heidelberg: Berlin, Heidelberg, 1981: 80-111.