Abstract
Tin (Sn)-based materials have emerged as promising electrocatalysts for selective reduction of CO2 to formate, but their overall performances are still limited by electrode structures which govern the accessibility to active sites, the electron transfer kinetics, and the catalytic stability. In this study, the heterostructured Sn/SnO2 nanoparticles dispersed by N-doped carbon layer networks (Sn/SnO2@NC) were synthesized by a melt-recrystallization method taking the low melting point of Sn (m.p. 232oC). The N-doped carbon layer networks derived from polydopamine could attract more electrons on the electrocatalyst, serve as conductive agents and protect the ultrafine nanoparticles from agglomeration and dissolution. The Sn/SnO2@NC electrode exhibited the greatly enhanced performance for CO2 reduction to formate in CO2-saturated 0.5 mol·L-1 aqueous NaHCO3 solution, showing a selectivity of 83% at only -0.9 V vs. RHE with a sustained current density of 17 mA·cm-2 for extended periods. By coupling the catalytic electrode with a commercially available RuO2 catalyst as the anode, the long-term CO2/H2O splitting has been achieved. Furthermore, a rechargeable aqueous Zn-CO2 battery with Sn/SnO2@NC as the cathode and Zn foil as the anode was constructed. It could output electric energy with an open circuit voltage of 1.35 V and a peak power density of 0.9 mW·cm-2.
Graphical Abstract
Keywords
CO2 electrochemical reduction, carbon layer networks, Sn/SnO2, formate, Zn-CO2 batteries
Publication Date
2022-02-28
Online Available Date
2021-10-21
Revised Date
2021-10-18
Received Date
2021-10-06
Recommended Citation
Xue Teng, Yanli Niu, Shuaiqi Gong, Xuan Liu, Zuofeng Chen.
Selective CO2 Reduction to Formate on Heterostructured Sn/SnO2 Nanoparticles Promoted by Carbon Layer Networks[J]. Journal of Electrochemistry,
2022
,
28(2): 2108441.
DOI: 10.13208/j.electrochem.210844
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss2/5
References
[1] Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen B A, Haasch R, Abiade J, Yarin A L, Salehi-Khojin A. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction[J]. Nat. Commun., 2013, 4:1-8.
[2]
Mikkelsen M, Jørgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide[J]. Energy Environ. Sci., 2010, 3:43-81.
doi: 10.1039/B912904A
URL
[3]
Zheng X, Han J, Fu Y, Deng Y, Liu Y, Yang Y, Wang T, Zhang L. Highly efficient CO2 reduction on ordered porous Cu electrode derived from Cu2O inverse opals[J]. Nano Energy, 2018, 48:93-100.
doi: 10.1016/j.nanoen.2018.03.023
URL
[4]
Yang H B, Hung S F, Liu S, Yuan K, Miao S, Zhang L, Huang X, Wang H Y, Cai W, Chen R, Gao J, Yang X, Chen W, Huang Y, Chen H M, Li C M, Zhang T, Liu B. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction[J]. Nat. Energy, 2018, 3:140-147.
doi: 10.1038/s41560-017-0078-8
URL
[5]
Li F, Chen L, Knowles G P, MacFarlane D R, Zhang J. Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity[J]. Angew. Chem. Int. Ed., 2017, 56:505-509.
doi: 10.1002/anie.201608279
URL
[6]
Zhang L, Zhao Z J, Gong J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms[J]. Angew. Chem. Int. Ed., 2017, 56:11326-11353.
doi: 10.1002/anie.v56.38
URL
[7]
Duan X, Xu J, Wei Z, Ma J, Guo S, Wang S, Liu H, Dou S. Metal-free carbon materials for CO2 electrochemical reduction[J]. Adv. Mater., 2017, 29:1701784.
doi: 10.1002/adma.v29.41
URL
[8]
Zhang R, Lv W, Lei L. Role of the oxide layer on Sn electrode in electrochemical reduction of CO2 to formate[J]. Appl. Surf. Sci., 2015, 356:24-29.
doi: 10.1016/j.apsusc.2015.08.006
URL
[9]
Kas R, Kortlever R, Milbrat A, Koper M T, Mul G, Baltrusaitis J. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons[J]. Phys. Chem. Chem. Phys., 2014, 16:12194-12201.
doi: 10.1039/C4CP01520G
URL
[10]
Joo F. Breakthroughs in hydrogen storage-formic Acid as a sustainable storage material for hydrogen[J]. ChemSusChem, 2008, 1:805-808.
doi: 10.1002/cssc.v1:10
URL
[11]
Grasemann M, Laurenczy G. Formic acid as a hydrogen source - recent developments and future trends[J]. Energy Environ. Sci., 2012, 5:8171.
doi: 10.1039/c2ee21928j
URL
[12]
Tian Y, Li D, Li C, Liu J, Wu J, Liu G, Feng Y. Self-driving CO2-to-formate electro-conversion on Bi film electrode in novel microbial reverse-electrodialysis CO2 reduction cell[J]. Chem. Eng. J., 2021, 414:128671.
doi: 10.1016/j.cej.2021.128671
URL
[13]
Han N, Wang Y, Deng J, Zhou J, Wu Y, Yang H, Ding P, Li Y. Self-templated synjournal of hierarchical mesoporous SnO2 nanosheets for selective CO2 reduction[J]. J. Mater. Chem. A, 2019, 7:1267-1272.
doi: 10.1039/c8ta10959a
[14]
Kortlever R, Peters I, Koper S, Koper M T M. Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon-supported bimetallic Pd-Pt nanoparticles[J]. ACS Catal., 2015, 5:3916-3923.
doi: 10.1021/acscatal.5b00602
URL
[15]
Wen G, Lee D U, Ren B, Hassan F M, Jiang G, Cano Z P, Gostick J, Croiset E, Bai Z, Yang L, Chen Z. Orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production[J]. Adv. Energy Mater., 2018, 8:1802427.
doi: 10.1002/aenm.v8.31
URL
[16]
Zhao C, Wang J, Goodenough J B. Comparison of electrocatalytic reduction of CO2 to HCOOH with different tin oxides on carbon nanotubes[J]. Electrochem. Commun., 2016, 65:9-13.
doi: 10.1016/j.elecom.2016.01.019
URL
[17]
Fang M, Zheng Z, Chen J, Chen Q, Liu D, Xu B, Wu J, Kuang Q, Xie Z. Surface structure-dependent electrocatalytic reduction of CO2 to C1 products on SnO2 catalysts[J]. Sustain. Energ. Fuels, 2020, 4:600-606.
doi: 10.1039/C9SE00678H
URL
[18]
An X, Li S, Yoshida A, Wang Z, Hao X, Abudula A, Guan G. Electrodeposition of tin-based electrocatalysts with different surface tin species distributions for electrochemical reduction of CO2 to HCOOH[J]. ACS Sustain. Chem. Eng., 2019, 7:9360-9368.
doi: 10.1021/acssuschemeng.9b00515
URL
[19]
Wu J, Bai X, Ren Z, Du S, Song Z, Zhao L, Liu B, Wang G, Fu H. Multivalent Sn species synergistically favours the CO2-into-HCOOH conversion[J]. Nano Res., 2020, 14:1053-1060.
doi: 10.1007/s12274-020-3149-2
URL
[20]
Lai J, Li S, Wu F, Saqib M, Luque R, Xu G. Unprecedented metal-free 3D porous carbonaceous electrodes for full water splitting[J]. Energy Environ. Sci., 2016, 9:1210-1214.
doi: 10.1039/C5EE02996A
URL
[21]
Liu S, Xiao J, Lu X F, Wang J, Wang X, Lou X W D. Efficient electrochemical reduction of CO2 to HCOOH over sub-2 nm SnO2 quantum wires with exposed grain boun-daries[J]. Angew. Chem. Int. Ed., 2019, 58:8499-8503.
doi: 10.1002/anie.v58.25
URL
[22]
Deng W, Zhang L, Li L, Chen S, Hu C, Zhao Z J, Wang T, Gong J. Crucial role of surface hydroxyls on the activity and stability in electrochemical CO2 reduction[J]. J. Am. Chem. Soc., 2019, 141:2911-2915.
doi: 10.1021/jacs.8b13786
URL
[23]
Ye K, Zhou Z, Shao J, Lin L, Gao D, Ta N, Si R, Wang G, Bao X. In situ reconstruction of a hierarchical Sn-Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction[J]. Angew. Chem. Int. Ed., 2020, 132:4844-4851.
doi: 10.1002/ange.v132.12
URL
[24]
Zhang A, He R, Li H, Chen Y, Kong T, Li K, Ju H, Zhu J, Zhu W, Zeng J. Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction[J]. Angew. Chem. Int. Ed., 2018, 57:10954-10958.
doi: 10.1002/anie.201806043
URL
[25]
Zhang G, Huang X, Ma X, Liu Y, Ying Y, Guo X, Fu N, Yu F, Wu H, Zhu Y, Huang H. A fast and general approach to produce a carbon coated Janus metal/oxide hybrid for catalytic water splitting[J]. J. Mater. Chem. A, 2021, 9:7606-7616.
doi: 10.1039/D0TA12021A
URL
[26]
Shi J, Qiu F, Yuan W, Guo M, Lu Z H. Nitrogen-doped carbon-decorated yolk-shell CoP@FeCoP micro-polyhedra derived from MOF for efficient overall water splitting[J]. Chem. Eng. J., 2021, 403:126312.
doi: 10.1016/j.cej.2020.126312
URL
[27]
Han Y, Chen X, Qian C, Zhang X, He W, Ren H, Li H, Diao G, Chen M. Co0.85Se nanoparticles armored by N-doped carbon layer with electronic structure regulation functions: an efficient oxygen evolution electrocatalyst[J]. Chem. Eng. J., 2021, 420:130461.
doi: 10.1016/j.cej.2021.130461
URL
[28]
Liu Z, Tang B, Gu X, Liu H, Feng L. Selective structure transformation for NiFe/NiFe2O4 embedded porous nitrogen-doped carbon nanosphere with improved oxygen evolution reaction activity[J]. Chem. Eng. J., 2020, 395:125170.
doi: 10.1016/j.cej.2020.125170
URL
[29] Tian J, Wang M, Shen M, Ma X, Hua Z, Zhang L, Shi J. Highly efficient and selective CO2 electro-reduction to HCOOH on Sn particle-decorated polymeric carbon nitride[J]. ChemSusChem, 2020, 13:6442-6448.
[30]
Ren X, Ren Z, Li Q, Wen W, Li X, Chen Y, Xie L, Zhang L, Zhu D, Gao B, Chu P K, Huo K. Tailored plum pudding-like Co2P/Sn encapsulated with carbon nanobox shell as superior anode materials for high-performance sodium-ion capacitors[J]. Adv. Energy Mater., 2019, 9:1900091.
doi: 10.1002/aenm.v9.16
URL
[31]
Kuang X, Liu T, Zeng W, Peng X, Wang Z. Hydrothermal synjournal and characterization of novel Sn2O3 hierarchical nanostructures[J]. Mater. Lett., 2016, 165:235-238.
doi: 10.1016/j.matlet.2015.10.142
URL
[32]
Qian Y, An T, Birgersson K E, Liu Z, Zhao D. Web-like interconnected carbon networks from NaCl-assisted pyrolysis of ZIF-8 for highly efficient oxygen reduction catalysis[J]. Small, 2018, 14:1704169.
doi: 10.1002/smll.v14.16
URL
[33]
Wang H, Maiyalagan T, Wang X. Review on recent pro-gress in nitrogen-doped graphene: synjournal, characterization, and its potential applications[J]. ACS Catal., 2012, 2:781-794.
doi: 10.1021/cs200652y
URL
[34] Liu S, Pang F, Zhang Q, Guo R, Wang Z, Wang Y, Zhang W, Ou J. Stable nanoporous Sn/SnO2 composites for efficient electroreduction of CO2 to formate over wide potential range[J]. Appl. Mater. Today, 2018, 13:135-143.
[35]
Niu Y, Teng X, Gong S, Chen Z. A bimetallic alloy anchored on biomass-derived porous N-doped carbon fibers as a self-supporting bifunctional oxygen electrocatalyst for flexible Zn-air batteries[J]. J. Mater. Chem. A, 2020, 8:13725-13734.
doi: 10.1039/D0TA03288C
URL
[36] Zhang Y, Deng Y P, Wang J, Jiang Y, Cui G, Shui L, Yu A, Wang X, Chen Z. Recent progress on flexible Zn-air batteries[J]. Energy Storage Mater., 2021, 35:538-549.
[37]
Urbain F, Tang P, Carretero N M, Andreu T, Gerling L G, Voz C, Arbiol J, Morante J R. A prototype reactor for highly selective solar-driven CO2 reduction to synjournal gas using nanosized earth-abundant catalysts and silicon photovoltaics[J]. Energy Environ. Sci., 2017, 10:2256-2266.
doi: 10.1039/C7EE01747B
URL
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons