Abstract
Nickel(Ni)-rich layered oxide has been regarded as one of the most important cathode materials for the lithium-ion batteries because of its low cost and high energy density. However, the concerns in safety and durability of this compound are still challenging for its further development. On this account, the in-depth understanding in the structural factors determining its capacity attenuation is essential. In this review, we summarize the recent advances on the degradation mechanisms of Ni-rich layered oxide cathode. Progresses in the structure evolution of Ni-rich oxide are carefully combed in terms of inner evolution, surface evolution, and the property under thermal condition, while the state-of-the-art modification strategies are also introduced. Finally, we provide our perspective on the future directions for investigating the degradation of Ni-rich oxide cathode.
Graphical Abstract
Keywords
lithium ion battery, cathode, Ni-rich layered oxide, structure evolution
Publication Date
2022-02-28
Online Available Date
2021-11-02
Revised Date
2021-10-28
Received Date
2021-09-13
Recommended Citation
Jia-Yi Wang, Sheng-Nan Guo, Xin Wang, Lin Gu, Dong Su.
Structural Degradation of Ni-Rich Layered Oxide Cathode for Li-Ion Batteries[J]. Journal of Electrochemistry,
2022
,
28(2): 2108431.
DOI: 10.13208/j.electrochem.210843
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss2/6
References
[1] Jung S K, Hwang I, Chang D, Park K Y, Kim S J, Seong W M, Eum D, Park J, Kim B, Kim J, Heo J H, Kang K. Nanoscale phenomena in lithium-ion batteries[J]. Chem. Rev., 2020, 120(14):6684-6737.
doi: 10.1021/acs.chemrev.9b00405 URL
[2] Xue W, Huang M, Li Y, Zhu Y G, Gao R, Xiao X, Zhang W, Li S, Xu G, Yu Y, Li P, Lopez J, Yu D, Dong Y, Fan W, Shi Z, Xiong R, Sun C J, Hwang I, Lee W K, Shao H Y, Johnson J A, Li J. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte[J]. Nat. Energy, 2021, 6:495-505.
doi: 10.1038/s41560-021-00792-y URL
[3] Manthiram A. A reflection on lithium-ion battery cathode chemistry[J]. Nat. Commun., 2020, 11(1):1550.
doi: 10.1038/s41467-020-15355-0 pmid: 32214093
[4] Or T, Gourley S W D, Kaliyappan K, Yu A, Chen Z W. Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook[J]. Carbon Energy, 2020, 2(1):6-43.
doi: 10.1002/cl2.v2.1 URL
[5] Liu Y, Zhai Y P, Xia Y Y, Li W, Zhao D Y. Recent progress of porous materials in lithium-metal batteries[J]. Small Structures, 2021, 2(5):2000118.
doi: 10.1002/sstr.v2.5 URL
[6] Li Y, Wu F, Qian J, Zhang M H, Yuan Y X, Bai Y, Wu C. Metal chalcogenides with heterostructures for high-performance rechargeable batteries[J]. Small Science, 2021, 1(9):2100012.
doi: 10.1002/smsc.v1.9 URL
[7] Gong D C, Wei C Y, Liang Z W, Tang Y B. Recent advances on sodium-ion batteries and sodium dual-ion batteries: State-of-the-art Na+ host anode materials[J]. Small Science, 2021, 1(6):2100014.
doi: 10.1002/smsc.v1.6 URL
[8] Zuo W H, Luo M Z, Liu X S, Wu J, Liu H D, Li J, Winter M, Fu R Q, Yang W L, Yang Y. Li-rich cathodes for rechargeable Li-based batteries: Reaction mechanisms and advanced characterization techniques[J]. Energ. Environ. Sci., 2020, 13(12):4450-4497.
doi: 10.1039/D0EE01694B URL
[9] Qiao Y, Yang H J, Chang Z, Deng H, Li X, Zhou H S. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent[J]. Nat. Energy, 2021, 6(6):653-662.
doi: 10.1038/s41560-021-00839-0 URL
[10] Zheng J X, Ye Y K, Liu T C, Xiao Y G, Wang C M, Wang F, Pan F. Ni/Li disordering in layered transition metal oxide: Electrochemical impact, origin, and control[J]. Accounts Chem. Res., 2019, 52(8):2201-2209.
doi: 10.1021/acs.accounts.9b00033 URL
[11] Wu J X, Cao Y L, Zhao H M, Mao J F, Guo Z P. The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries[J]. Carbon Energy, 2019, 1(1):57-76.
doi: 10.1002/cl2.v1.1 URL
[12] Yu L, Wang J, Xu Z J. A perspective on the behavior of lithium anodes under a magnetic field[J]. Small Structures, 2020, 2(1):2000043.
doi: 10.1002/sstr.v2.1 URL
[13] Song Y W, Peng Y Q, Zhao M, Lu Y, Liu J N, Li B Q, Zhang Q. Understanding the impedance response of lithium polysulfide symmetric cells[J]. Small Science, 2021: 2100042.
[14] Zhao S Q, Guo Z Q, Yan K, Wan S W, He F R, Sun B, Wang G X. Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials[J]. Energy Storage Mater., 2021, 34:716-734.
[15] Li T Y, Yuan X Z, Zhang L, Song D T, Shi K Y, Bock C. Degradation mechanisms and mitigation strategies of nickel-rich NMC-based lithium-ion batteries[J]. Electrochem. Energy Rev., 2019, 3(1):43-80.
doi: 10.1007/s41918-019-00053-3 URL
[16] Li J, Hwang S, Guo F M, Li S, Chen Z W, Kou R H, Sun K, Sun C J, Gan H, Yu A P, Stach E A, Zhou H, Su D. Phase evolution of conversion-type electrode for lithium ion batteries[J]. Nat. Commun., 2019, 10(1):2224.
doi: 10.1038/s41467-019-09931-2 URL
[17] Ren J C, Huang Y L, Zhu H, Zhang B H, Zhu H K, Shen S H, Tan G Q, Wu F, He H, Lan S, Xia X H, Liu Q. Recent progress on MOF-derived carbon materials for energy storage[J]. Carbon Energy, 2020, 2(2):176-202.
doi: 10.1002/cl2.v2.2 URL
[18] Zhang X D, Yue F S, Liang J Y, Shi J L, Li H, Guo Y G. Structure design of cathode electrodes for solid-state batteries: Challenges and progress[J]. Small Structures, 2020, 1(3):2000042.
doi: 10.1002/sstr.v1.3 URL
[19] Meng X Y, Sun Y F, Yu M Z, Wang Z Y, Qiu J S. Hydrogen-bonding crosslinking mxene to highly robust and ultralight aerogels for strengthening lithium metal anode[J]. Small Science, 2021, 1(9):2100021.
doi: 10.1002/smsc.v1.9 URL
[20] Hou P Y, Yin J M, Ding M, Huang J Z, Xu X J. Surface/interfacial structure and chemistry of high-energy nickel-rich layered oxide cathodes: Advances and perspectives[J]. Small, 2017, 13(45):1701802.
doi: 10.1002/smll.v13.45 URL
[21] Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M, Schmuch R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure[J]. Nat. Energy, 2021, 6(2):123-134.
doi: 10.1038/s41560-020-00748-8 URL
[22] Cai W, Yan C, Yao Y X, Xu L, Xu R, Jiang L L, Huang J Q, Zhang Q. Rapid lithium diffusion in order@disorder pathways for fast-charging graphite anodes[J]. Small Structures, 2020, 1(1):2000010.
doi: 10.1002/sstr.v1.1 URL
[23] Chen L, Su Y F, Chen S, Li N, Bao L Y, Li W K, Wang Z, Wang M, Wu F. Hierarchical Li1.2Ni0.2Mn0.6O2 nanoplates with exposed {010} planes as high-performance cathode material for lithium-ion batteries[J]. Adv. Mater., 2014, 26(39):6756-6760.
doi: 10.1002/adma.v26.39 URL
[24] Lee S Y, Park G S, Jung C, Ko D S, Park S Y, Kim H G, Hong S H, Zhu Y, Kim M. Revisiting primary particles in layered lithium transition-metal oxides and their impact on structural degradation[J]. Adv. Sci., 2019, 6(6):1800843.
doi: 10.1002/advs.v6.6 URL
[25] Nitta N, Wu F, Lee J T, Yushin G. Li-ion battery materials: Present and future[J]. Mater. Today, 2015, 18(5):252-264.
doi: 10.1016/j.mattod.2014.10.040 URL
[26] Bhuvaneswari S, Varadaraju U V, Gopalan R, Prakash R. Structural stability and superior electrochemical performance of Sc-doped LiMn2O4 spinel as cathode for lithium ion batteries[J]. Electrochim. Acta, 2019, 301:342-351.
doi: 10.1016/j.electacta.2019.01.174
[27] Galceran M, Guerfi A, Armand M, Zaghib K, Casas C M. The critical role of carbon in the chemical delithiation kinetics of LiFePO4[J]. J. Electrochem. Soc., 2020, 167(7):070538.
doi: 10.1149/1945-7111/ab7ce3 URL
[28] Alsamet M A M M, Burgaz E. Synjournal and characterization of nano-sized LiFePO4 by using consecutive combination of sol-gel and hydrothermal methods[J]. Electrochim. Acta, 2021, 367:137530.
doi: 10.1016/j.electacta.2020.137530 URL
[29] Bai Y, Li L M, Li Y, Chen G H, Zhao H C, Wang Z H, Wu C, Ma H Y, Wang X Q, Cui H Y, Zhou J. Reversible and irreversible heat generation of NCA/Si-C pouch cell during electrochemical energy-storage process[J]. J. Energy Chem., 2019, 29:95-102.
doi: 10.1016/j.jechem.2018.02.016 URL
[30] Xia S B, Huang W J, Shen X, Liu J M, Cheng F X, Liu J J, Yang X F, Guo H. Rearrangement on surface structures by boride to enhanced cycle stability for LiNi0.80Co0.15Al0.05O2 cathode in lithium ion batteries[J]. J. Energy Chem., 2020, 45:110-118.
doi: 10.1016/j.jechem.2019.09.023 URL
[31] Kim J, Cho H, Jeong H Y, Ma H, Lee J, Hwang J, Park M, Cho J. Self-induced concentration gradient in nickel-rich cathodes by sacrificial polymeric bead clusters for high-energy lithium-ion batteries[J]. Adv. Energy Mater., 2017, 7(12):1602559.
doi: 10.1002/aenm.v7.12 URL
[32] Li H, Zhou P F, Liu F M, Li H X, Cheng F Y, Chen J. Stabilizing nickel-rich layered oxide cathodes by magnesium doping for rechargeable lithium-ion batteries[J]. Chem. Sci., 2019, 10(5):1374-1379.
doi: 10.1039/C8SC03385D URL
[33] Liang C P, Kong F T, Longo R C, Zhang C X, Nie Y F, Zheng Y P, Cho K. Site-dependent multicomponent doping strategy for Ni-rich LiNi1-2yCoyMnyO2 (y = 1/12) cathode materials for Li-ion batteries[J]. J. Mater. Chem. A, 2017, 5(48):25303-25313.
doi: 10.1039/C7TA08618K URL
[34] Li W, Erickson E M, Manthiram A. High-nickel layered oxide cathodes for lithium-based automotive batteries[J]. Nat. Energy, 2020, 5(1):26-34.
doi: 10.1038/s41560-019-0513-0 URL
[35] Kim U H, Kim J H, Hwang J Y, Ryu H H, Yoon C S, Sun Y K. Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries[J]. Mater. Today, 2019, 23:26-36.
doi: 10.1016/j.mattod.2018.12.004 URL
[36] Sun H H, Ryu H H, Kim U H, Weeks J A, Heller A, Sun Y K, Mullins C B. Beyond doping and coating: Prospective strategies for stable high-capacity layered Ni-rich cathodes[J]. ACS Energy Lett., 2020, 5(4):1136-1146.
doi: 10.1021/acsenergylett.0c00191 URL
[37] Li J Y, Manthiram A. A comprehensive analysis of the interphasial and structural evolution over long-term cycling of ultrahigh-nickel cathodes in lithium-ion batteries[J]. Adv. Energy Mater., 2019, 9(45):1902731.
doi: 10.1002/aenm.v9.45 URL
[38] Liu W, Oh P, Liu X, Lee M J, Cho W, Chae S, Kim Y, Cho J. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angew. Chem. Int. Edit., 2015, 54(15):4440-4457.
doi: 10.1002/anie.201409262 URL
[39] Li H Y, Liu A R, Zhang N, Wang Y Q, Yin S, Wu H H, Dahn J R. An unavoidable challenge for Ni-rich positive electrode materials for lithium-ion batteries[J]. Chem. Mater., 2019, 31(18):7574-7583.
doi: 10.1021/acs.chemmater.9b02372 URL
[40] Li Y, Li X H, Wang Z X, Guo H J, Wang J X. Spray pyrolysis synjournal of nickel-rich layered cathodes LiNi1-2xCox-MnxO2 (x = 0.075, 0.05, 0.025) for lithium-ion batteries[J]. J. Energy Chem., 2018, 27(2):447-450.
doi: 10.1016/j.jechem.2017.11.025 URL
[41] Liu Y, Tang L B, Wei H X, Zhang X H, He Z J, Li Y J, Zheng J C. Enhancement on structural stability of Ni-rich cathode materials by in-situ fabricating dual-modified layer for lithium-ion batteries[J]. Nano Energy, 2019, 65:104043.
doi: 10.1016/j.nanoen.2019.104043 URL
[42] Kim U H, Ryu H H, Kim J H, Mücke R, Kaghazchi P, Yoon C S, Sun Y K. Microstructure-controlled Ni-rich cathode material by microscale compositional partition for next-generation electric vehicles[J]. Adv. Energy Mater., 2019, 9(15):1803902.
doi: 10.1002/aenm.v9.15 URL
[43] Zhang L Q, Zhu C X, Yu S C, Ge D H, Zhou H S. Status and challenges facing representative anode materials for rechargeable lithium batteries[J]. J. Energy Chem., 2022, 66:260-294.
doi: 10.1016/j.jechem.2021.08.001 URL
[44] Liang L W, Zhang W H, Zhao F, Denis D K, Zaman F U, Hou L R, Yuan C Z. Surface/interface structure degradation of Ni-rich layered oxide cathodes toward lithium-ion batteries: Fundamental mechanisms and remedying strategies[J]. Adv. Mater. Inter., 2019, 7(3):1901749.
doi: 10.1002/admi.v7.3 URL
[45] Hu D Z, Su Y F, Chen L, Li N, Bao L Y, Lu Y, Zhang Q Y, Wang J, Chen S, Wu F. The mechanism of side reaction induced capacity fading of Ni-rich cathode materials for lithium ion batteries[J]. J. Energy Chem., 2021, 58:1-8.
doi: 10.1016/j.jechem.2020.09.031 URL
[46] Lin Q Y, Guan W H, Zhou J B, Meng J, Huang W, Chen T, Gao Q, Wei X, Zeng Y W, Li J X, Zhang Z. Ni-Li anti-site defect induced intragranular cracking in Ni-rich layer-structured cathode[J]. Nano Energy, 2020, 76:105021.
doi: 10.1016/j.nanoen.2020.105021 URL
[47] Lee W, Muhammad S, Sergey C, Lee H, Yoon J, Kang Y M, Yoon W S. Advances in the cathode materials for lithium rechargeable batteries[J]. Angew. Chem. Int. Ed., 2020, 59(7):2578-2605.
doi: 10.1002/anie.v59.7 URL
[48] Nam K W, Bak S M, Hu E Y, Yu X Q, Zhou Y N, Wang X, Wu L, Zhu Y, Chung K Y, Yang X Q. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries[J]. Adv. Funct. Mater., 2013, 23(8):1047-1063.
doi: 10.1002/adfm.v23.8 URL
[49] Yin S Y, Deng W T, Chen J, Gao X, Zou G Q, Hou H S, Ji X B. Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries[J]. Nano Energy, 2021, 83:105854.
doi: 10.1016/j.nanoen.2021.105854 URL
[50] Qian G N, Zhang J, Chu S Q, Li J Z, Zhang K, Yuan Q X, Ma Z F, Pianetta P, Li L S, Jung K, Liu Y J. Understanding the mesoscale degradation in nickel-rich cathode materials through machine-learning-revealed strain-redox decoupling[J]. ACS Energy Lett., 2021, 6(2):687-693.
doi: 10.1021/acsenergylett.0c02699 URL
[51] Tang Z F, Wang S, Liao J Y, Wang S, He X D, Pan B C, He H Y, Chen C H. Facilitating lithium-ion diffusion in layered cathode materials by introducing Li+/Ni2+ antisite defects for high-rate Li-ion batteries[J]. Research, 2019: UNSP2198906.
[52] Xu Z R, Jiang Z R, Kuai C G, Xu R, Qin C D, Zhang Y, Rahman M M, Wei C X, Nordlund D, Sun C J, Xiao X H, Du X W, Zhao K J, Yan P F, Liu Y J, Lin F. Charge distribution guided by grain crystallographic orientations in polycrystalline battery materials[J]. Nat. Commun., 2020, 11(1):83.
doi: 10.1038/s41467-019-13884-x URL
[53] Su Y F, Zhang Q Y, Chen L, Bao L Y, Lu Y, Chen S, Wu F. Stress accumulation in Ni-rich layered oxide cathodes: Origin, impact, and resolution[J]. J. Energy Chem., 2022, 65:236-253.
doi: 10.1016/j.jechem.2021.05.048 URL
[54] Yoon C S, Ryu H H, Park G T, Kim J H, Kim K H, Sun Y K. Extracting maximum capacity from Ni-rich Li[Ni0.95Co0.025Mn0.025]O2 cathodes for high-energy-density lithium-ion batteries[J]. J. Mater. Chem. A, 2018, 6(9):4126-4132.
doi: 10.1039/C7TA11346C URL
[55] Park S Y, Baek W J, Lee S Y, Seo J A, Kang Y S, Koh M, Kim S H. Probing electrical degradation of cathode materials for lithium-ion batteries with nanoscale resolution[J]. Nano Energy, 2018, 49:1-6.
doi: 10.1016/j.nanoen.2018.04.005 URL
[56] Cheng X P, Li Y H, Cao T C, Wu R, Wang M M, Liu H, Liu X Q, Lu J X, Zhang Y F. Real-time observation of chemomechanical breakdown in a layered nickel-rich oxide cathode realized by in situ scanning electron microscopy[J]. ACS Energy Lett., 2021, 6(5):1703-1710.
doi: 10.1021/acsenergylett.1c00279 URL
[57] Wu H Q, Qin C D, Wang K, Han X, Sui M L, Yan P F. Revealing two distinctive intergranular cracking mechanisms of Ni-rich layered cathode by cross-sectional scanning electron microscopy[J]. J. Power Sources, 2021, 503:230066.
doi: 10.1016/j.jpowsour.2021.230066 URL
[58] Xu Z R, Rahman M M, Mu L Q, Liu Y J, Lin F. Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries[J]. J. Mater. Chem. A, 2018, 6(44):21859-21884.
doi: 10.1039/C8TA06875E URL
[59] Ryu H H, Park K J, Yoon C S, Sun Y K. Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation?[J]. Chem. Mater., 2018, 30(3):1155-1163.
doi: 10.1021/acs.chemmater.7b05269 URL
[60] Miller D J, Proff C, Wen J G, Abraham D P, Bareño J. Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy[J]. Adv. Energy Mater., 2013, 3(8):1098-1103.
doi: 10.1002/aenm.v3.8 URL
[61] Zheng S Y, Hong C Y, Guan X Y, Xiang Y X, Liu X S, Xu G L, Liu R, Zhong G M, Zheng F, Li Y X, Zhang X Y, Ren Y, Chen Z H, Amine K, Yang Y. Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process[J]. J. Power Sources, 2019, 412:336-343.
doi: 10.1016/j.jpowsour.2018.11.053 URL
[62] Yan P F, Zheng J M, Gu M, Xiao J, Zhang J G, Wang C M. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries[J]. Nat. Commun., 2017, 8; 14101.
doi: 10.1038/ncomms14101 URL
[63] Zhang H L, Omenya F, Yan P F, Luo L L, Whittingham M S, Wang C M, Zhou G W. Rock-salt growth-induced (003) cracking in a layered positive electrode for Li-ion batteries[J]. ACS Energy Lett., 2017, 2(11):2607-2615.
doi: 10.1021/acsenergylett.7b00907 URL
[64] Xiao B W, Wang K, Xu G L, Song J H, Chen Z H, Amine K, Reed D, Sui M L, Sprenkle V, Ren Y, Yan P F, Li X L. Revealing the atomic origin of heterogeneous Li-ion diffusion by probing Na[J]. Adv. Mater., 2019, 31(29):1805889.
doi: 10.1002/adma.v31.29 URL
[65] Li S, Yao Z P, Zheng J M, Fu M S, Cen J J, Hwang S, Jin H L, Orlov A, Gu L, Wang S, Chen Z W, Su D. Direct observation of defect-aided structural evolution in a nickel-rich layered cathode[J]. Angew. Chem. Int. Ed., 2020, 59(49):22092-22099.
doi: 10.1002/anie.v59.49 URL
[66] Qian G N, Zhang Y T, Li L S, Zhang R X, Xu J M, Cheng Z J, Xie S J, Wang H, Rao Q L, He Y S, Shen Y B, Chen L W, Tang M, Ma Z F. Single-crystal nickel-rich layered-oxide battery cathode materials: Synjournal, electrochemistry, and intra-granular fracture[J]. Energy Storage Mater., 2020, 27:140-149.
[67] Trevisanello E, Ruess R, Conforto G, Richter F H, Janek J. Polycrystalline and single crystalline ncm cathode materials-quantifying particle cracking, active surface area, and lithium diffusion[J]. Adv. Energy Mater., 2021, 11(18):2003400.
doi: 10.1002/aenm.v11.18 URL
[68] Yan P F, Zheng J M, Liu J, Wang B Q, Cheng X P, Zhang Y F, Sun X L, Wang C M, Zhang J G. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries[J]. Nat. Energy, 2018, 3(7):600-605.
doi: 10.1038/s41560-018-0191-3 URL
[69] Li Y W, Li Z B, Chen C, Yang K, Cao B, Xu S Y, Yang N, Zhao W G, Chen H B, Zhang M J, Pan F. Recent progress in Li and Mn rich layered oxide cathodes for Li-ion batteries[J]. J. Energy Chem., 2021, 61:368-385.
doi: 10.1016/j.jechem.2021.01.034 URL
[70] Shao M C, Shang C S, Zhang F X, Xu Z, Hu W, Lu Q Q, Gai L G. Selective adsorption-involved formation of NMC532/PANI microparticles with high ageing resistance and improved electrochemical performance[J]. J. Energy Chem., 2021, 54:668-679.
doi: 10.1016/j.jechem.2020.07.001 URL
[71] Qiu Q Q, Yuan S S, Bao J, Wang Q C, Yue X Y, Li X L, Wu X J, Zhou Y N. Suppressing irreversible phase transition and enhancing electrochemical performance of Ni-rich layered cathode LiNi0.9Co0.05Mn0.05O2 by fluorine substitution[J]. J. Energy Chem., 2021, 61:574-581.
doi: 10.1016/j.jechem.2021.02.012 URL
[72] Wu F, Liu N, Chen L, Li N, Dong J Y, Lu Y, Tan G Q, Xu M Z, Cao D Y, Liu Y F, Chen Y B, Su Y F. The nature of irreversible phase transformation propagation in nickel-rich layered cathode for lithium-ion batteries[J]. J. Energy Chem., 2021, 62:351-358.
doi: 10.1016/j.jechem.2021.03.035 URL
[73] Lin F, Markus I M, Nordlund D, Weng T C, Asta M D, Xin H L, Doeff M M. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries[J]. Nat. Commun., 2014, 5:3529.
doi: 10.1038/ncomms4529 URL
[74] Jung S K, Gwon H, Hong J, Park K Y, Seo D H, Kim H, Hyun J, Yang W, Kang K. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries[J]. Adv. Energy Mater., 2014, 4(1):1300787.
doi: 10.1002/aenm.201300787 URL
[75] Tsutomu O, Atsushi U, Nagayama M. Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells[J]. J. Electrochem. Soc., 1993, 140(7):1862-1870.
doi: 10.1149/1.2220730 URL
[76] Lin Q Y, Guan W H, Meng J, Huang W, Wei X, Zeng Y W, Li J X, Zhang Z. A new insight into continuous performance decay mechanism of Ni-rich layered oxide cathode for high energy lithium ion batteries[J]. Nano Energy, 2018, 54:313-321.
doi: 10.1016/j.nanoen.2018.09.066 URL
[77] Wang J, Lu X, Zhang Y, Zhou J, Wang J, Xu S. A new insight into continuous performance decay mechanism of Ni-rich layered oxide cathode for high energy lithium ion batteries[J]. Nano Energy, 2018, 54:313-321.
doi: 10.1016/j.nanoen.2018.09.066 URL
[78] Zhang S S. Understanding of performance degradation of LiNi0.80Co0.10Mn0.10O2 cathode material operating at high potentials[J]. J. Energy Chem., 2020, 41:135-141.
doi: 10.1016/j.jechem.2019.05.013
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons