Abstract
Designing and fabricating the electrocatalysts is attracting more and more attention in recent years due to a global interest in developing techniques for electrochemical energy conversion and storage, as well as elelectro-synthesis of valuable chemicals. The activity is one of the key performance parameters for electrocatalysts, while the observed activity can be affected by mass loading of electrocatalysts. Here, we take cobalt oxide (Co3O4)/graphite paper electrode (Co3O4/GPE) as a model electrode to demon-strate how the mass loading of Co3O4 catalyst influences ethylene glycol (EG) oxidation in alkaline (KOH) by cyclic votammetry (CV) and chronopentiometry (CP) approaches. Analyses from redox peaks and double layer capacitances reveal that increasing the mass loading provided more electrochemical active sites. Increasing loading made a positive contribution to EG oxidation at the low oxidation potential, while less significant improvement at the high oxidation potential. The results will provide some insight for optimzing the mass loading of electrocatalysts for electrocatalysis of small organic molecules.
Graphical Abstract
Keywords
mass loading, redox, double layer capacitance, cobalt oxide, ethylene glycol oxidation
Publication Date
2022-02-28
Online Available Date
2021-09-22
Revised Date
2021-09-04
Received Date
2021-08-04
Recommended Citation
Sheng-Nan Sun, Zhi-Chuan Xu.
Mass Loading Optimization for Ethylene Glycol Oxidation at Different Potential Regions[J]. Journal of Electrochemistry,
2022
,
28(2): 2108411.
DOI: 10.13208/j.electrochem.210841
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss2/8
References
[1]
Wu T Z, Sun S N, Song J J, Xi S B, Du Y H, Chen B, Sasangka W A, Liao H B, Gan C L, Scherer G G, Zeng L, Wang H J, Li H, Grimaud A, Xu Z J. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation[J]. Nat. Catal., 2019, 2(9):763-772.
doi: 10.1038/s41929-019-0325-4
URL
[2]
Lü C D, Zhong L X, Liu H J, Fang Z W, Yan C S, Chen M X, Kong Y, Lee C, Liu D B, Li S Z, Liu J W, Li S, Chen G, Yan Q Y, Yu G H. Selective electrocatalytic synjournal of urea with nitrate and carbon dioxide[J]. Nat. Sustain., 2021, 4(10):868-876.
doi: 10.1038/s41893-021-00741-3
URL
[3]
Anantharaj S, Kundu S. Do the evaluation parameters reflect intrinsic activity of electrocatalysts in electrochemical water splitting?[J]. ACS Energy Lett., 2019, 4(6):1260-1264.
doi: 10.1021/acsenergylett.9b00686
[4]
Yu L, Sun S, Li H Y, Xu Z J. Effects of catalyst mass loading on electrocatalytic activity: an example of oxygen evolution reaction[J]. Fundamental Research, 2021, 1(4):448-452.
doi: 10.1016/j.fmre.2021.06.006
URL
[5]
Sun S N, Li H Y, Xu Z C J. Impact of surface area in evaluation of catalyst activity[J]. Joule, 2018, 2(6):1024-1027.
doi: 10.1016/j.joule.2018.05.003
URL
[6]
Chong L, Wen J G, Kubal J, Sen F G, Zou J X, Greeley J, Chan M, Barkholtz H, Ding W J, Liu D J. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks[J]. Science, 2018, 362(6420):1276-1281.
doi: 10.1126/science.aau0630
pmid: 30409809
[7]
Sun S N, Sun Y M, Zhou Y, Xi S B, Ren X, Huang B C, Liao H B, Wang L Y P, Du Y H, Xu Z C. Shifting oxygen charge towards octahedral metal: a way to promote water oxidation on cobalt spinel oxides[J]. Angew. Chem. Int. Ed., 2019, 58(18):6042-6047.
doi: 10.1002/anie.v58.18
URL
[8]
Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principle[J]. Science, 2011, 334(6061):1383-1385.
doi: 10.1126/science.1212858
pmid: 22033519
[9]
Wei C, Xu Z C J. The possible implications of magnetic field effect on understanding the reactant of water splitting[J]. Chinese J. Catal., 2021, 43(1):148-157.
doi: 10.1016/S1872-2067(21)63821-4
URL
[10]
Sun S N, Sun L B, Xi S B, Du Y H, Prathap MUA, Wang Z L, Zhang Q C, Fisher A, Xu Z C J. Electrochemical oxidation of C3 saturated alcohols on Co3O4 in alkaline[J]. Electrochim. Acta, 2017, 228:183-194.
doi: 10.1016/j.electacta.2017.01.086
URL
[11]
Xie R C, Batchelor-McAuley C, Rauwel E, Rauwel P, Compton R G. Electrochemical characterisation of Co@Co(OH)2 core-shell nanoparticles and their aggregation in solution[J]. ChemElectroChem, 2020, 7(20):4259-4268.
doi: 10.1002/celc.v7.20
URL
[12]
Xiao Z H, Huang Y C, Dong C L, Xie C, Liu Z J, Du S Q, Chen W, Yan D F, Tao L, Shu Z W, Zhang G H, Duan H G, Wang Y Y, Zou Y Q, Chen R, Wang S Y. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction[J]. J. Am. Chem. Soc., 2020, 142(28):12087-12095.
doi: 10.1021/jacs.0c00257
URL
[13]
Augustyn V, Come J, Lowe M A, Kim J W, Taberna P L, Tolbert S H, Abruña H D, Simon P, Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nat. Mater., 2013, 12(6):518-522.
doi: 10.1038/nmat3601
URL
[14]
Dai C, Chan C W I, Barrow W, Smith A, Song P, Potier F, Wadhawan J D, Fisher A C, Lawrence N S. A route to unbuffered pH monitoring: a novel electrochemical approach[J]. Electrochim. Acta, 2016, 190:879-886.
doi: 10.1016/j.electacta.2016.01.004
URL
[15]
Li Z, Gadipelli S, Li H, Howard C A, Brett D J L, Shearing P R, Guo Z, Parkin I P, Li F. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage[J]. Nat. Energy, 2020, 5(2):160-168.
doi: 10.1038/s41560-020-0560-6
URL
[16]
Da Silva L M, De Faria L A, Boodts J F C. Determination of the morphology factor of oxide layers[J]. Electrochim. Acta, 2001, 47(3):395-403.
doi: 10.1016/S0013-4686(01)00738-1
URL
[17] Bard, A J, Faulkner L R. Electrochemical methods fundamentals and applications (Second edition)[M]. John Wiley & Sons, Inc., 2001: 102.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons