•  
  •  
 

Corresponding Author

Hong-Wei Chen(hwchen@hqu.edu.cn);
Li-Wei Chen(lwchen2008@sinano.ac.cn)

Abstract

Non-nucleophilic electrolytes are promising next-generation highly stable electrolytes for magnesium-ion batteries (MIBs). However, a passivation layer on Mg metal anode usually blocks Mg2+ diffusion, leading to poor reaction kinetics and low Coulombic efficiency of the Mg plating/stripping in these electrolytes. Here we explore the utilization of phenyl disulfide (PDF) as a film-forming additive for non-nucleophilic electrolytes to regulate the interfacial chemistry on Mg metal anode. Phenyl-thiolate generated from the PDF additive was found to suppress the unfavorable surface blocking layer, resulted in a high Coulombic efficiency of up to 99.5% for the Mg plating/stripping process as well as a remarkably decreased overpotential. The full battery consisting of Mg metal anode and Mo6S7Se cathode remained stable in the PDF additive-containing electrolyte at 0.1 C over 150 cycles at room temperature.

Graphical Abstract

Keywords

magnesium-ion batteries, non-nucleophilic electrolyte, interface, additives, phenyl disulfide

Publication Date

2022-03-28

Online Available Date

2022-03-22

Revised Date

2022-01-20

Received Date

2021-12-28

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.