Abstract
Designing electrochemical interfaces for in vivo analysis of neurochemicals with high selectivity and long-term stability is vital for monitoring dynamic variation and dissecting the complex mechanisms of pathogenesis in living animals. This review focuses on the development of electrochemical interfaces based on rational design of molecular probes for in vivo measurement with high selectivity and high stability from three aspects: (1) Specific recognition probes were rationally designed and created to remarkably improve the selectivity of in vivo analysis in a complicated brain environment. (2) The Au-C≡C functionalized surface was developed to remarkably enhance the stability of molecular assembly, and employed for real-time mapping and accurate quantification in the brains. (3) Combined with the Au-C≡C functionalized molecular probe, the new type anti-biofouling microfiber array was established to achieve long-term and real-time monitoring dynamic changes in the brain. At last, some perspectives are highlighted in the further development of the efficient electrochemical interfaces for in vivo detection in the brain.
Graphical Abstract
Keywords
electrochemical interface, recognition molecule, high stability, in vivo, brain
Publication Date
2022-03-28
Online Available Date
2021-12-18
Revised Date
2021-12-04
Received Date
2021-10-06
Recommended Citation
Yue Wang, Li-Min Zhang, Yang Tian.
Rational Design of Electrochemical Molecular Probes for Highly Selective and Long-Term Measurement In Vivo[J]. Journal of Electrochemistry,
2022
,
28(3): 2108451.
DOI: 10.13208/j.electrochem.210845
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss3/8
References
[1]
Zhang M N, Yu P, Mao L Q. Rational design of surface/interface chemistry for quantitative in vivo monitoring of brain chemistry[J]. Acc. Chem. Res., 2012, 45(4):533-543.
doi: 10.1021/ar200196h
URL
[2]
Zhang L M, Tian Y. Designing recognition molecules and tailoring functional surfaces for in vivo monitoring of small molecules in the brain[J]. Acc. Chem. Res., 2018, 51(3):688-696.
doi: 10.1021/acs.accounts.7b00543
URL
[3] Qiang Y, Artoni P, Seo K J, Culaclii S, Hogan V, Zhao X Y, Zhong Y D, Han X, Wang p M, Lo Y K, Li Y M, Patel H A, Huang Y F, Sambangi A, Chu J S V, Liu W T, Fagiolini M. Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain[J]. Sci. Adv., 2018, 4(9): eaat0626.
[4]
Tsai D, Sawyer D, Bradd A, Yuste R, Shepard K L. A very large-scale microelectrode array for cellular-resolution electrophysiology[J]. Nat. Commun., 2017, 8:1802.
doi: 10.1038/s41467-017-02009-x
URL
[5]
Zhu W Y, Gu C Y, Dunevall J, Ren L, Zhou X M, Ewing A G. Combined amperometry and electrochemical cytometry reveal differential effects of cocaine and methylphen-idate on exocytosis and the fraction of chemical release[J]. Angew. Chem. Int. Ed., 2019, 58(13):4238-4242.
doi: 10.1002/anie.201813717
URL
[6]
Liu Y L, Huang W H. Stretchable electrochemical sensors for cell and tissue detection[J]. Angew. Chem. Int. Ed., 2021, 60(6):2757-2767.
doi: 10.1002/anie.202007754
URL
[7]
Kubota R, Sasaki Y, Minamiki T, Minami T. Chemical sensing platforms based on organic thin-film transistors functionalized with artificial receptors[J]. ACS Sens., 2019, 4(10):2571-2587.
doi: 10.1021/acssensors.9b01114
URL
[8]
Li L P, Liu W Y, Dong H Y, Gui Q Y, Hu Z Q, Li Y Y, Liu J P. Surface and interface engineering of nanoarrays toward advanced electrodes and electrochemical energy storage devices[J]. Adv. Mater., 2021, 33(13):2004959.
doi: 10.1002/adma.202004959
URL
[9] Chai X L, Zhou X G, Zhu A W, Zhang L M, Qin Y, Shi G Y, Tian Y. A two-channel ratiometric electrochemical biosensor for in vivo monitoring of copper ions in a rat brain using gold truncated octahedral microcages[J]. An-gew. Chem. Int. Ed., 2013, 52(31):8129-8133.
[10]
Zhou J, Zhang L M, Tian Y. Micro electrochemical pH sensor applicable for real-time ratiometric monitoring of pH values in rat brains[J]. Anal. Chem., 2016, 88(4):2113-2118.
doi: 10.1021/acs.analchem.5b03634
pmid: 26768309
[11]
Zhou J, Liao C A, Zhang L M, Wang Q G, Tian Y. Mole-cular hydrogel-stabilized enzyme with facilitated electron transfer for determination of H2O2 released from live cells[J]. Anal. Chem., 2014, 86(9):4395-4401.
doi: 10.1021/ac500231e
pmid: 24716876
[12]
Liu H Q, Tian Y, Xia P P. Pyramidal, rodlike, spherical gold nanostructures for direct electron transfer of copper, zinc-superoxide dismutase: application to superoxide anion biosensors[J]. Langmuir, 2008, 24(12):6359-6366.
doi: 10.1021/la703587x
URL
[13]
Li X G, Liu Y, Zhu A W, Luo Y P, Deng Z F, Tian Y. Real-time electrochemical monitoring of cellular H2O2 integrated with in situ selective cultivation of living cells based on dual functional protein microarrays at Au-TiO2 surfaces[J]. Anal. Chem., 2010, 82(15):6512-6518.
doi: 10.1021/ac100807c
URL
[14]
Deng Z F, Rui Q, Yin X, Liu H Q, Tian Y. In vivo detection of superoxide anion in bean sprout based on ZnO nanodisks with facilitated activity for direct electron transfer of superoxide dismutase[J]. Anal. Chem., 2008, 80(15):5839-5846.
doi: 10.1021/ac800213x
URL
[15]
Wang Z, Liu D, Gu H, Zhu A W, Tian Y, Shi G Y. NTA-modified carbon electrode as a general relaying substrate to facilitate electron transfer of SOD: application to in vivo monitoring of O2·- in a rat brain[J]. Biosens. Bioelectron., 2013, 43:101-107.
doi: 10.1016/j.bios.2012.10.071
URL
[16]
Jiang Y M, Xiao X, Li C C, Luo Y, Chen S, Shi G Y, Han K, Gu H. Facile ratiometric electrochemical sensor for in vivo/online repetitive measurements of cerebral ascorbic acid in brain microdiaysate[J]. Anal. Chem., 2020, 92(5):3981-3989.
doi: 10.1021/acs.analchem.9b05484
URL
[17]
Jo A, Do H, Jhon G J, Suh M, Lee Y. Electrochemical nanosensor for real-time direct imaging of nitric oxide in living brain[J]. Anal. Chem., 2011, 83(21):8314-8319.
doi: 10.1021/ac202225n
URL
[18]
Li S, Zhu A W, Zhu T, Zhang J Z H, Tian Y. Single bio-sensor for simultaneous quantification of glucose and pH in a rat brain of diabetic model using both current and potential outputs[J]. Anal. Chem., 2017, 89(12):6656-6662.
doi: 10.1021/acs.analchem.7b00881
URL
[19]
Shao X L, Gu H, Wang Z, Chai X L, Tian Y, Shi G Y. Highly selective electrochemical strategy for monitoring of cerebral Cu2+ based on a carbon dot-TPEA hybridized surface[J]. Anal. Chem. 2013, 85(1):418-425.
doi: 10.1021/ac303113n
URL
[20]
Xiao T F, Wu F, Hao J, Zhang M N, Yu P, Mao L Q. In vivo analysis with electrochemical sensors and biosensors[J]. Anal. Chem., 2017, 89(1):300-313.
doi: 10.1021/acs.analchem.6b04308
URL
[21]
Liu W, Dong H, Zhang L M, Tian Y. Development of an efficient biosensor for the in vivo monitoring of Cu+ and pH in the brain: rational design and synjournal of recognition molecules[J]. Angew. Chem. Int. Ed., 2017, 56(51):16328-16332.
doi: 10.1002/anie.201710863
URL
[22]
Luo Y P, Zhang L M, Liu W, Yu Y Y, Tian Y. A single biosensor for evaluating the levels of copper ion and L-cysteine in a live rat brain with Alzheimer's Disease[J]. Angew. Chem. Int. Ed., 2015, 54(47):14053-14056.
doi: 10.1002/anie.201508635
URL
[23]
Liu L, Zhao F, Liu W, Zhu T, Zhang J Z H, Chen C, Dai Z H, Peng H S, Huang J L, Hu Q, Bu W B, Tian Y. An electrochemical biosensor with dual signal outputs: toward simultaneous quantification of pH and O2 in the brain upon ischemia and in a tumor during cancer starvation therapy[J]. Angew. Chem. Int. Ed., 2017, 56(35):10471-10475.
doi: 10.1002/anie.201705615
pmid: 28643445
[24]
Dong H, Zhou Q, Zhang L M, Tian Y. Rational design of specific recognition molecules for simultaneously monitoring of endogenous polysulfide and hydrogen sulfide in the mouse brain[J]. Angew. Chem. Int. Ed., 2019, 58(39):13948-13953.
doi: 10.1002/anie.201907210
pmid: 31322310
[25]
Zhao F, Liu Y D, Dong H, Feng S Q, Shi G Y, Lin L N, Tian Y. An electrochemophysiological microarray for real-time monitoring and quantification of multiple ions in the brain of a freely moving rat[J]. Angew. Chem. Int. Ed., 2020, 59(26):10426-10430.
doi: 10.1002/anie.202002417
pmid: 32190959
[26]
Liu Y D, Liu Z C, Zhao F, Tian Y. Long-term tracking and dynamically quantifying of reversible changes of extracellular Ca2+ in multiple brain regions of freely moving animals[J]. Angew. Chem. Int. Ed., 2021, 60(26):14429-14437.
doi: 10.1002/anie.202102833
URL
[27]
Hu B, Kong F P, Gao X N, Jiang L L, Li X F, Gao W, Xu K H, Tang B. Avoiding thiol compound interference: a nanoplatform based on high-fidelity Au-Se bonds for biological applications[J]. Angew. Chem. Int. Ed., 2018, 57(19):5306-5309.
doi: 10.1002/anie.201712921
URL
[28]
Hines T, Díez-Pérez I, Nakamura H, Shimazaki T, Asai Y, Tao N J. Controlling formation of single-molecule junctions by electrochemical reduction of diazonium terminal groups[J]. J. Am. Chem. Soc., 2013, 135(9):3319-3322.
doi: 10.1021/ja3106434
URL
[29]
Liu X M, Xiao T F, Wu F, Shen M Y, Zhang M N, Yu H H, Mao L Q. Ultrathin cell-membrane-mimic phosphorylcholine polymer film coating enables large improvements for in vivo electrochemical detection[J]. Angew. Chem. Int. Ed., 2017, 56(39):11802-11806.
doi: 10.1002/anie.201705900
URL
[30]
Bhat A H, Dar K B, Anees S, Zargar M A, Masood A, Sofi M A, Ganie S A. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight[J]. Biomed. Pharmacother., 2015, 74:101-110.
doi: 10.1016/j.biopha.2015.07.025
URL
[31]
Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease[J]. Redox. Biol., 2018, 14:450-464.
doi: S2213-2317(17)30726-7
pmid: 29080524
[32]
Rahman M A, Kothalam A, Choe E S, Won M S, Shim Y B. Stability and sensitivity enhanced electrochemical in vivo superoxide microbiosensor based on covalently co-immobilized lipid and cytochrome c[J]. Anal. Chem., 2012, 84(15):6654-6660.
doi: 10.1021/ac301086m
URL
[33]
Tian Y, Mao L, Okajima T, Ohsaka T. Superoxide dismutase-based third-generation biosensor for superoxide anion[J]. Anal. Chem., 2002, 74(10):2428-2434.
doi: 10.1021/ac0157270
URL
[34]
Deng Z F, Rui Q, Yin X, Liu H Q, Tian Y. In vivo detection of superoxide anion in bean sprout based on ZnO nanodisks with facilitated activity for direct electron transfer of superoxide dismutase[J]. Anal. Chem., 2008, 80(15):5839-5846.
doi: 10.1021/ac800213x
URL
[35]
Chen X J J, West A C, Cropek D M, Banta S. Detection of the superoxide radical anion using various alkanethiol monolayers and immobilized cytochrome c[J]. Anal. Chem., 2008, 80(24):9622-9629.
doi: 10.1021/ac800796b
URL
[36]
Huang S Q, Zhang L M, Dai L Y, Wang Y Y, Tian Y. Nonenzymatic electrochemical sensor with ratiometric signal output for selective determination of superoxide anion in rat brain[J]. Anal. Chem., 2021, 93(13):5570-5576.
doi: 10.1021/acs.analchem.1c00151
URL
[37]
Yadav P K, Martinov M, Vitvitsky V, Seravalli J, Wedmann R, Filipovic M R, Banerjee R. Biosynjournal and reactivity of cysteine persulfides in signaling[J]. J. Am. Chem. Soc., 2016, 138(1):289-299.
doi: 10.1021/jacs.5b10494
URL
[38]
Mishanina A V, Libiad M, Banerjee R. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways[J]. Nat. Chem. Biol., 2015, 11(7):457-464.
doi: 10.1038/nchembio.1834
pmid: 26083070
[39]
Yu B C, Zheng Y Q, Yuan Z N, Li S S, Zhu H, De la Cruz L K, Zhang J, Ji K L, Wang S M, Wang B H. Toward direct protein S-persulfidation: a prodrug approach that directly delivers hydrogen persulfide[J]. J. Am. Chem. Soc., 2018, 140(1):30-33.
doi: 10.1021/jacs.7b09795
URL
[40]
Wang S J, Liu X M, Zhang M N. Reduction of amminer-uthenium(III) by sulfide enables in vivo electrochemical monitoring of free endogenous hydrogen sulfide[J]. Anal. Chem., 2017, 89(10):5382-5388.
doi: 10.1021/acs.analchem.7b00069
URL
[41]
Zhang C P, Liu Z C, Zhang L M, Zhu A M, Liao F M, Wan J J, Zhou J, Tian Y. A robust Au-C≡C functionalized surface: toward real-time mapping and accurate quantification of Fe2+ in the brains of live AD mouse models[J]. Angew. Chem. Int. Ed., 2020, 59(46):20499-20507.
doi: 10.1002/anie.202006318
URL
[42]
Li X C, Ren L, Dunevall J, Ye D X, White H S, Edwards M A, Ewing A G. Nanopore opening at flat and nanotip conical electrodes during vesicle impact electrochemical cytometry[J]. ACS Nano, 2018, 12(3):3010-3019.
doi: 10.1021/acsnano.8b00781
URL
Included in
Analytical Chemistry Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons