•  
  •  
 

Corresponding Author

Jian-Feng Li(li@xmu.edu.cn)

Abstract

The purpose of this study is to optimize the electrochemical degradation of oxytetracycline (OTC) in water using a low cost and simple preparation method. In this paper, the Fe3O4 magnetic nanoparticles were used as catalysts to activate the electrochemical oxidation system of peroxydisulfates (PDS) which acted as electrolytes to provide active free radicals in order to improve the degradation of OTC under the condition of applying current. As one of the tetracycline antibiotics (TCs), OTC is one of the most used antibiotics in the world, therefore, it is necessary to study the effective degradation of OTC. By means of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and other characterization methods, it was proved that the Fe3O4 magnetic nanoparticles at about 150 nm were successfully prepared by a simple hydrothermal method. Firstly, it is suggested that the application of electric current and the presence of Fe3O4 magnetic nanoparticles are necessary for the effective degradation of OTC. Secondly, the optimal reaction experiment confirmed an excellent OTC degradation ability by combination of Fe3O4 magnetic nanoparticles and current. The optimal reaction conditions were as follows: the concentration of PDS was 4.0 mmol·L-1, the initial pH value of the solution was 7, and the current density j was 30 mA·cm-2. When the dosage of Fe3O4 magnetic nanoparticles was 0.1 g·L-1 and the initial OTC concentration was 70 mg·L-1, the degradation rate of OTC could reach 88.75% within 60 min and the rate constant of the first-order kinetics simulation curve could reach 0.06069. In addition, the variation of UV-vis characteristic peak of OTC during the degradation process revealed that the change of OTC concentration was not due to simple physical adsorption, but through the complete degradation of active free radicals. In addition, after the continuous circulation of Fe3O4 magnetic nanoparticles for 5 times, the degradation rate of OTC could still reach more than 68%, proving that Fe3O4 magnetic nanoparticles have good catalytic stability. The presence of Fe3O4 magnetic nanoparticles and the application of electric current could promote the formations of SO4·- and ·OH, respectively. The radical quenching experiments showed that both SO4 ·- and ·OH were active free radicals degraded by antibiotics. This work uses a low-cost catalyst to enhance an electrochemical degradation of OTC. The experimental operation is simple, the degradation rate is fast, and the energy consumption is low. It is promising to practical applications.

Graphical Abstract

Keywords

electrochemical oxidation, oxytetracycline degradation, Fe3O4 magnetic nanoparticles, stability

Publication Date

2022-04-28

Online Available Date

2021-08-09

Revised Date

2021-08-05

Received Date

2021-07-14

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.