Abstract
The relationship between the electrochemical activity of fuel cell catalysts and Pt particle size, as well as the catalyst support and co-catalyst is still unclear. In this work, FESEM, XRD, BET, TEM and CV techniques were adopted to investigate the effects of TiO2 anatase (A)/rutile (R) phases content on the electrochemical activity of Pt electrocatalyst. The results showed that the anatase-rutile phase transformation occurred during the heat treatment of TiO2 at 700 ~ 900 oC accompanied by the growth of two-phase crystalline size, and anatase was completely transformed into rutile at 900 oC. TEM results revealed that the ultrafine Pt electrocatalysts with the particle size of 1.8 ~ 2.8 nm were successfully prepared over the TiO2-CNx supports. The content of TiO2 (A)/(R) phases had a “volcano-type” effect on both the BET surface area of TiO2-CNx supports and the real “effective” electrochemical active surface area (ECSA) of Pt/TiO2-CNx catalysts. When the rutile content was 25%, the TiO2(25%R)-CNx support and Pt/TiO2(25%R)-CNx catalyst had the largest specific surface area and the most electrochemical active sites, respectively. It is speculated that raising the rutile content, there might be a strong metal-support interaction between Pt nanoparticles and TiO2(25%R)-CNx support with the rutile content of 25%, which could anchor the ultrafine Pt nanoparticles, resulting in the highest ECSA of Pt/TiO2(25%R)-CNx catalyst. Therefore, the Pt/TiO2(25%R)-CNx became more suitable as a catalyst for fuel cells.
Graphical Abstract
Keywords
catalyst, TiO2, anatase, rutile, electrochemical active surface area
Publication Date
2022-05-28
Online Available Date
2022-01-02
Revised Date
2021-12-21
Received Date
2021-12-15
Recommended Citation
Ai-Lin Cui, Yang Bai, Hong-Ying Yu, Hui-Min Meng.
Electrocatalytic “Volcano-Type” Effect of Nano-TiO2 (A)/(R) Phase Content in Pt/TiO2-CNx Catalyst[J]. Journal of Electrochemistry,
2022
,
28(5): 2110021.
DOI: 10.13208/j.electrochem.211002
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss5/3
References
[1]
Liao J H, Ding W, Tao S C, Nie Y, Li W, Wu G P, Chen S G, Li L, Wei Z D. Carbon supported IrM (M = Fe, Ni, Co) alloy nanoparticles for the catalysis of hydrogen oxidation in acidic and alkaline medium[J]. Chinese J. Catal., 2016, 37(7): 1142-1148.
doi: 10.1016/S1872-2067(15)61064-6
URL
[2]
Lin R B, Shih S M. Effects of mass transfer on kinetics of hydrogen oxidation reaction at Nafion/Pt-black thin-film electrodes[J]. J. Taiwan Inst. Chem. E., 2013, 44(3): 393-401.
doi: 10.1016/j.jtice.2012.12.001
URL
[3]
Babić B M, Vračar L M, Radmilović V, Krstajić N V. Carbon cryogel as support of platinum nano-sized electrocatalyst for the hydrogen oxidation reaction[J]. Electrochim. Acta, 2006, 51(18): 3820-3826.
doi: 10.1016/j.electacta.2005.10.048
URL
[4]
Serrano-Ruiz J C, López-Cudero A, Solla-Gullón J, Sepúl-veda-Escribano A, Aldaz A, Rodríguez-Reinoso F. Hydrogenation of α, β unsaturated aldehydes over polycrystalline, (111) and (100) preferentially oriented Pt nanoparticles supported on carbon[J]. J. Catal., 2008, 253(1): 159-166.
doi: 10.1016/j.jcat.2007.10.010
URL
[5]
Calvillo L, Lázaro M J, García-Bordejé E, Moliner R, Cabot P L, Esparbé I, Pastor E, Quintana J J. Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells[J]. J. Power Sources, 2007, 169(1): 59-64.
doi: 10.1016/j.jpowsour.2007.01.042
URL
[6]
Hayden B E. Particle size and support effects in electrocatalysis[J]. Accounts Chem. Res., 2013, 46(8): 1858-1866.
doi: 10.1021/ar400001n
pmid: 23719578
[7]
Rodgers M P, Bonville L J, Kunz H R, Slattery D K, Fenton J M. Fuel cell perfluorinated sulfonic acid membrane degradation correlating accelerated stress testing and lifetime[J]. Chem. Rev., 2012, 112(11): 6075-6103.
doi: 10.1021/cr200424d
URL
[8]
Tripković V, Abild-Pedersen F, Studt F, Cerri I, Nagami T, Bligaard T, Rossmeisl J. Metal oxide-supported platinum overlayers as proton-exchange membrane fuel cell cathodes[J]. ChemCatChem, 2012, 4(2): 228-235.
doi: 10.1002/cctc.201100308
URL
[9]
Jia J C, Wang H, Ji S, Yang H J, Li X S, Wang R F. SnO2-embedded worm-like carbon nanofibers supported Pt nanoparticles for oxygen reduction reaction[J]. Electrochim. Acta. 2014, 141: 13-19.
doi: 10.1016/j.electacta.2014.07.020
URL
[10]
Wang Y J, Wilkinson D P, Zhang J J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts[J]. Chem. Rev., 2011, 111(12): 7625-7651.
doi: 10.1021/cr100060r
URL
[11]
Zhao X, Zhu J B, Liang L, Liao J H, Liu C P, Xing W. Enhanced activity of Pt nano-crystals supported on a novel TiO2@N-doped C nano-composite for methanol oxidation reaction[J]. J. Mater. Chem., 2012, 22(37): 19718-19725.
doi: 10.1039/c2jm33926a
URL
[12]
Li Z H, Yang K, Liu G, Deng G F, Li J Q, Li G, Yue R L, Yang J, Chen Y F. Effect of reduction treatment on structural properties of TiO2 supported Pt nanoparticles and their catalytic activity for benzene oxidation[J]. Catal. Lett., 2014, 144(6): 1080-1087.
doi: 10.1007/s10562-014-1245-1
URL
[13]
Chung S L, Wang C M. A sol-gel combustion synthesis method for TiO2 powders with enhanced photocatalytic activity[J]. J. Sol-Gel Sci. Techn., 2011, 57(1): 76-85.
doi: 10.1007/s10971-010-2326-2
URL
[14]
von Kraemer S, Wikander J, Lindbergh G, Lundblad A, Palmqvist A E C. Evaluation of TiO2 as catalyst support in Pt-TiO2/C composite cathodes for the proton exchange membrane fuel cell[J]. J. Power Sources, 2008, 180(1): 185-190.
doi: 10.1016/j.jpowsour.2008.02.023
URL
[15]
Qin Y H, Li Y F, Lv R L, Wang T L, Wang W G, Wang C W. Enhanced methanol oxidation activity and stability of Pt particles anchored on carbon-doped TiO2 nanocoating support[J]. J. Power Sources, 2015, 278: 639-644.
doi: 10.1016/j.jpowsour.2014.12.096
URL
[16]
Antoniassi R M, Quiroz J, Barbosa E C M, Parreira L S, Isidoro R A, Spinacé E V, Silva J C M, Camargo P H C. Improving the electrocatalytic activities and CO tolerance of Pt NPs by incorporating TiO2 nanocubes onto carbon supports[J]. ChemCatChem, 2021, 13(8): 1931-1939.
doi: 10.1002/cctc.202002066
URL
[17]
Stühmeier B M, Selve S, Patel M U M, Geppert T N, Gasteiger H A, El-Sayed H A. Highly selective Pt/TiOx catalysts for the hydrogen oxidation reaction[J]. ACS Appl. Energy Mater., 2019, 2(8): 5534-5539.
doi: 10.1021/acsaem.9b00718
URL
[18]
Connelly K, Wahab A K, Idriss H. Photoreaction of Au/TiO2 for hydrogen production from renewables: A review on the synergistic effect between anatase and rutile phases of TiO2[J]. Mater. Renew. Sustain. Energy, 2012, 1(1): 3.
doi: 10.1007/s40243-012-0003-9
URL
[19]
You Y F, Xu C H, Xu S S, Cao S, Wang J P, Huang Y B, Shi S Q. Structural characterization and optical property of TiO2 powders prepared by the sol-gel method[J]. Ceram. Int., 2014, 40(6): 8659-8666.
doi: 10.1016/j.ceramint.2014.01.083
URL
[20]
Miszczak S, Pietrzyk B. Anatase-rutile transformation of TiO2 sol-gel coatings deposited on different substrates[J]. Ceram. Int., 2015, 41(6): 7461-7465.
doi: 10.1016/j.ceramint.2015.02.066
URL
[21] Gao R Q(高如琴), Zhu L F(朱灵峰), Guo Y P(郭毅萍), Zhang R T(张润涛). Effect of heat treatment temperature on photocatalytic property of nano TiO2 films[J]. J. Silicates (硅酸盐学报), 2011, 39(2): 325-328+333.
[22]
Tang J, Meng H M, He Y F. Energy-saving synthesis of electrolytic manganese dioxide using oxygen cathode with Pt/TiO2-CNx nanocatalysts[J]. J. Appl. Electrochem., 2017, 47(5): 653-659.
doi: 10.1007/s10800-017-1065-2
URL
[23] Tang J, Meng H M. TiO2-modified CNx nanowires as a Pt electrocatalyst support with high activity and durability for the oxygen reduction reaction[J]. Phy. Chem. Chem. Phys., 2016, 18(3): 1500-1506.
[24]
Tang J, Meng H M, Li S, Yu M H, Li H, Shi J H. The energy saving mechanism of gas diffusion electrode based on Pt/C catalyst for saving energy and green electrodeposition of manganese dioxide[J]. Electrochim. Acta, 2015, 170: 92-97.
doi: 10.1016/j.electacta.2015.04.096
URL
[25]
Tang J, Meng H M, Liang X. Gas diffusion electrode with platinum/titanium nitride-carbon nitride nanocatalysts for the energy-saving and environment-friendly electrodeposition of manganese dioxide[J]. J. Clean. Prod., 2016, 137: 903-909.
doi: 10.1016/j.jclepro.2016.07.187
URL
[26] Ma X L(马旭莉), Yang Y Y(杨言言), Wang Z D(王忠德), Hao X G(郝晓刚). Determination of electroactive area of porous membrane electrode by electrodeposition of nickel ferricyanide[J]. Rare metal mater. Eng.(稀有金属材料与工程), 2013, 42(4): 776-780.
[27] Fan M Y(范梦阳), Qiao J L(乔锦丽). Study on high efficiency electrochemical reduction of CO2 by CuO/Cu2O nano catalyst with multistage structure[C]// Annual conference of Chinese Society of Environmental Sciences(中国环境科学学会学术年会), China, Sichuan, 2014: 5246-5256.
[28]
Tzorbatzoglou F, Brouzgou A, Jing S Y, Wang Y, Song S Q, Tsiakaras P. Oxygen reduction and hydrogen oxidation reaction on novel carbon supported PdxIry electrocatalysts[J]. Int. J. Hydrogen Energ., 2018, 43(26): 11766-11777.
doi: 10.1016/j.ijhydene.2018.02.071
URL
[29]
Bakardjieva S, Šubrt J, Štengl V, Dianez M J, Sayagues M J. Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase[J]. Appl. Cataly. B-Environ., 2005, 58(3-4): 193-202.
doi: 10.1016/j.apcatb.2004.06.019
URL
[30]
Lv K L, Yu J G, Deng K J, Li X H, Li M. Effect of phase structures on the formation rate of hydroxyl radicals on the surface of TiO2[J]. J. Phy. Chem. Solids, 2010, 71(4): 519-522.
doi: 10.1016/j.jpcs.2009.12.026
URL
[31]
Yan M C, Chen F, Zhang J L, Anpo M. Preparation of controllable crystalline titania and study on the photocatalytic properties[J]. J. Phys. Chem. B, 2005, 109(18): 8673-8678.
doi: 10.1021/jp046087i
URL
[32]
Ma X, Xue L H, Li X B, Yang M, Yan Y W. Controlling the crystalline phase of TiO2 powders obtained by the solution combustion method and their photocatalysis activity[J]. Ceram. Int. 2015, 41(9): 11927-11935.
doi: 10.1016/j.ceramint.2015.05.161
URL
[33]
Catauro M, Tranquillo E, Poggetto G, Pasquali M, Dell’Era A, Ciprioti S V. Influence of the heat treatment on the particles size and on the crystalline phase of TiO2 synthesized by the sol-gel method[J]. Mater., 2018, 11(12): 2364.
doi: 10.3390/ma11122364
URL
[34]
Bakardjieva S, Šubrt J, Štengl V, Večerníková E, Bezdička P. Comparison of photocatalytical properties of anata-se and rutile TiO2 in degradation of 4-Chlorophenol in aqueous solution[J]. Solid State Phenom., 2003, 90-91:7-12.
doi: 10.4028/www.scientific.net/SSP.90-91.7
URL
[35] Roen L M, Paik C H, Jarvic T D. Electrocatalytic corrosion of carbon support in PEMFC cathodes[J]. Electro-chem. Solid SL, 2004, 7(1): A19-A22.
[36]
Ohno T, Tokieda K, Higashida S, Matsumura M. Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene[J]. Appl. Catal. A-Gen., 2003, 244(2): 383-391.
doi: 10.1016/S0926-860X(02)00610-5
URL
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons