Abstract
Ammonia (NH3) plays an essential role in agriculture and modern industries. Electrochemical fixation of nitrogen (N2) to ammonia (NRR) under ambient conditions with renewable electricity is a promising strategy to replace the industrial Haber-Bosch method. However, it usually suffers from extremely poor ammonia yield and low Faraday efficiency due to the poor electrocatalysts. Therefore, intensive studies have been devoted to developing efficient NRR catalysts till now. Among them, palladium (Pd) can capture protons in the aqueous phase to form stable α-PdH, which balances the competitive adsorption between nitrogen and protons as well as reduces the NRR reaction energy barrier. In addition, carbon-based materials have the characteristics of weak hydrogen adsorption capacity, wide potential window and abundant valence electrons. In this work, graphene composite powder supported palladium particles (PdNPs@GCP) were prepared by chemical reduction under ambient condition via adopting commercial hy-drophobic GCP as carbon carrier for nitrogen reduction reaction. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations results showed that the well-crystallized palladium particles were successfully loaded on the GCP surface, and GCP was conducive to exposure of more active sites. Raman and XPS spectra confirmed the existence of metal-carrier interaction. Benefitting from the specific structure-activity relationship of the PdNPs@GCP, the ammonia yield was 5.2 μg·h-1·mg-1 at -0.2 V vs. RHE and Faraday efficiency of 9.77% was achieved at -0.1 V vs. RHE in 0.1 mol·L-1 Na2SO4 under natural conditions. Compared with pure palladium phase and GCP, the NRR activity of PdNPs@GCP was enhanced remarkably. The two-dimensional structure of GCP improved the mass transport efficiency and the hydrophobic surface could inhibit hydrogen evolution reaction through weakening the proton aggregation near the catalyst. Meanwhile, Pd particles on GCP would be favorable for nitrogen adsorption and activation, and the metal-carrier interaction of the catalyst could fine-tune the electronic structure of Pd, optimizing the adsorption and desorption of reaction intermediates to accelerate NRR. Strictly controlled experiments were carried out to eliminate any possible existing internal and external contaminations to confirm the source of the product NH3. The morphology and component of the catalyst were almost unchanged after suffering a long-term (10 hours) electrochemical test, indicating good stability of PdNPs@GCP. In addition, no byproduct hydrazine (N2H4) was detected, proving the excellent NRR selectivity of the catalyst. This work provides a facile strategy for the fabrication of carbon-based composite catalysts, which has a promising prospect in electrochemical ammonia synthesis and other energy transformation field.
Graphical Abstract
Keywords
nitrogen reduction, palladium particles, electrocatalysis, Faraday efficiency
Publication Date
2022-05-28
Online Available Date
2021-06-10
Revised Date
2021-05-18
Received Date
2021-04-14
Recommended Citation
Ying-Chao Wang, Zi-Zai Ma, Yi-Fan Wu, Xiao-Guang Wang.
Preparation and Properties of GCP-Supported Palladium Particles Composite towards Electrochemical Ammonia Synthesis[J]. Journal of Electrochemistry,
2022
,
28(5): 2104091.
DOI: 10.13208/j.electrochem.210409
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss5/8
References
[1]
Fryzuk M D. Inorganic chemistry-ammonia transformed[J]. Nature, 2004, 427(6974): 498-499.
doi: 10.1038/427498a
URL
[2]
Kyriakou V, Garagounis I, Vourros A, Vasileiou E, Stou-kides M. An electrochemical Haber-Bosch process[J]. Joule, 2020, 4(1): 142-158.
doi: 10.1016/j.joule.2019.10.006
URL
[3]
Singh A R, Rohr B A, Schwalbe J A, Cargnello M, Chan K, Jaramillo T F, Chorkendorff I, Nørskov J K. Electrochemical ammonia synthesis-the selectivity challenge[J]. ACS Catal., 2017, 7(1): 706-709.
doi: 10.1021/acscatal.6b03035
URL
[4]
Li W X, Fang W, Chen W, Dinh K N, Ren H, Zhao L, Liu C T, Yan Q Y. Bimetal-MOF nanosheets as efficient bifun-ctional electrocatalysts for oxygen evolution and nitrogen reduction reaction[J]. J. Mater. Chem. A, 2020, 8(7): 3658-3666.
doi: 10.1039/C9TA13473E
URL
[5]
Wu D S, Kusada K, Kitagawa H. Recent progress in the structure control of Pd-Ru bimetallic nanomaterials[J]. Sci. Technol. Adv. Mater., 2016, 17(1): 583-596.
doi: 10.1080/14686996.2016.1221727
URL
[6]
Wang R F, Wang H, Luo F, Liao S J. Core-shell-structured low-platinum electrocatalysts for fuel cell applications[J]. Electrochem. Energy Rev., 2018, 1(3): 324-387.
doi: 10.1007/s41918-018-0013-0
URL
[7]
Deng G R, Wang T, Alshehri A A, Alzahrani K A, Wang Y, Ye H J, Luo Y L, Sun X P. Improving the electrocatalytic N2 reduction activity of Pd nanoparticles through surface modification[J]. J. Mater. Chem. A, 2019, 7(38): 21674-21677.
doi: 10.1039/C9TA06523G
URL
[8]
Wang J, Yu L, Hu L, Chen G, Xin H L, Feng X F. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential[J]. Nat. Commun., 2018, 9(1): 1795.
doi: 10.1038/s41467-018-04213-9
pmid: 29765053
[9]
Chen K J, Liu K, An P D, Li H J W, Lin Y Y, Hu J H, Jia C K, Fu J W, Li H M, Liu H, Lin Z, Li W Z, Li J H, Lu Y R, Chan T S, Zhang N, Liu M. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction[J]. Nat. Commun., 2020, 11(1): 4173.
doi: 10.1038/s41467-020-18062-y
URL
[10]
Zhu D, Zhang L H, Ruther R E, Hamers R J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction[J]. Nat. Mater., 2013, 12(9): 836-841.
doi: 10.1038/nmat3696
pmid: 23812128
[11] Li J(李佳), Yang C Z(杨传铮), Zhang X G(张熙贵), Zhang J(张建), Xia B J(夏保佳). XRD studies on the electrode materials in the charge-discharge process of a graphite/Li(Ni1/3Co1/3Mn1/3)O2 battery[J]. Acta Phys. Sin.(物理学报), 2009, 58(9): 6573-6581.
[12]
Moussa S, Siamaki A R, Gupton B F, El-Shall M S. Pd-partially reduced graphene oxide catalysts: laser synthesis of Pd nanoparticles supported on PRGO nanosheets for carbon-carbon cross coupling reactions[J]. ACS Catal., 2012, 2(1): 145-154.
doi: 10.1021/cs200497e
URL
[13]
Liu Y, Sun G Z, Jiang C B, Zheng X T, Zheng L X, Li C M. Highly sensitive detection of hydrogen peroxide at a carbon nanotube fiber microelectrode coated with palladium nanoparticles[J]. Microchim. Acta, 2014, 181(1-2): 63-70.
doi: 10.1007/s00604-013-1066-8
URL
[14]
Jeong G H, Choi D, Kang M, Shin J, Kang J G, Kim S W. One-pot synthesis of Au@Pd/graphene nanostructures: electrocatalytic ethanol oxidation for direct alcohol fuel cells[J]. RSC Adv., 2013, 3(23): 8864-8870.
doi: 10.1039/c3ra40505b
URL
[15] Lin J(林健), Cui Y F(崔永福), Cui J L(崔金龙), Wen Z S(文钟晟), Sun J C(孙俊才). Electrochemical performance of SnS2/GCP microcomposite as anode material for lithium-ion battery[J]. Chin. J. Inorg. Chem. (无机化学学报), 2018, 34(1): 33-42.
[16]
Luo B, Fang Y, Wang B, Zhou J S, Song H H, Zhi L J. Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage[J]. Energy Environ. Sci., 2012, 5(1): 5226-5230.
doi: 10.1039/C1EE02800F
URL
[17] Zhang H(张欢), Ni Z H(倪振华), Fan H M(樊海明). Study on charge transfer between Palladium nanosheets and graphene by Raman spectroscopy[C]. Chinese Physical Society, The 17th Chinese National Conference on Light Scattering, Xi’an, 2013.
[18]
Liao W R, Qi L, Wang Y L, Qin J Y, Liu G Y, Liang S J, He H Y, Jiang L L. Interfacial engineering promoting electrosynthesis of ammonia over Mo/phosphotungstic acid with high performance[J]. Adv. Funct. Mater., 2021, 31(22): 2009151.
doi: 10.1002/adfm.202009151
URL
[19]
Shi W, Zhang B S, Lin Y M, Wang Q, Zhang Q, Su D S. Enhanced chemoselective hydrogenation through tuning the interaction between Pt nanoparticles and carbon supports: insights from identical location transmission electron microscopy and X-ray photoelectron spectroscopy[J]. ACS Catal., 2016, 6(11): 7844-7854.
doi: 10.1021/acscatal.6b02207
URL
[20]
Lee H K, Koh C S L, Lee Y H, Liu C, Phang I Y, Han X M, Tsung C K, Ling X Y. Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach[J]. Sci. Adv., 2018, 4(3): eaar3208.
doi: 10.1126/sciadv.aar3208
URL
[21]
Yang Y J, Wang S Q, Wen H M, Ye T, Chen J, Li C P, Du M. Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation[J]. Angew. Chem. Int. Ed., 2019, 58(43): 15362-15366.
doi: 10.1002/anie.201909770
URL
[22]
Zhang J C, Zhao B, Liang W K, Zhou G S, Liang Z Q, Wang Y W, Qu J Y, Sun Y H, Jiang L. Three-phase electrolysis by gold nanoparticle on hydrophobic interface for enhanced electrochemical nitrogen reduction reaction[J]. Adv. Sci., 2020, 7(22): 2002630.
doi: 10.1002/advs.202002630
URL
[23]
Yuan S T, Huang X H, Wang H, Xie L J, Cheng J Y, Kong Q Q, Sun G H, Chen C M. Structure evolution of oxygen removal from porous carbon for optimizing super-capacitor performance[J]. J. Energ. Chem., 2020, 51: 396-404.
doi: 10.1016/j.jechem.2020.04.004
URL
[24]
Lv J L, Wu S L, Tian Z F, Ye Y X, Liu J, Liang C H. Construction of PdO-Pd interfaces assisted by laser irradiation for enhanced electrocatalytic N2 reduction reaction[J]. J. Mater. Chem. A, 2019, 7(20): 12627-12634.
doi: 10.1039/C9TA02045D
URL
[25]
Li L(李琳), Ren H M(任慧敏), Wei B H(卫博慧), Li J(李军), Wang J(王杰), Li H(李晖), Yao C Z(姚陈忠). V-N Co-doped mesoporous carbon nanomaterials as catalysts for artificial N2 reduction[J]. Chin. J. Appl. Chem.(应用化学), 2020, 37(8): 930-938.
doi: 10.11944/j.issn.1000-0518.2020.00.200037
[26]
Wu T X, Han M M, Zhu X G, Wang G Z, Zhang Y X, Zhang H M, Zhao H J. Experimental and theoretical understanding on electrochemical activation and inactivation processes of Nb3O7(OH) for ambient electrosynthesis of NH3[J]. J. Mater. Chem. A, 2019, 7(28): 16969-16978.
doi: 10.1039/C9TA05155D
URL
[27]
Li Y Z, Yu Y, Wang J G, Song J, Li Q, Dong M D, Liu C J. CO oxidation over graphene supported palladium catalyst[J]. Appl. Catal. B: Environ., 2012, 125: 189-196.
doi: 10.1016/j.apcatb.2012.05.023
URL
[28]
Liu K, Fu J W, Zhu L, Zhang X D, Li H M, Liu H, Hu J H, Liu M. Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction[J]. Nanoscale, 2020, 12(8): 4903-4908.
doi: 10.1039/C9NR09117C
URL
[29] Luo S J, Li X M, Gao W G, Zhang H Q, Luo M. An MOF-derived C@NiO@Ni electrocatalyst for N2 conversion to NH3 in alkaline electrolytes[J]. Sustain. Energy Fuels, 2020, 4(1): 164-170.
[30]
Yu H J, Wang Z Q, Yin S L, Li C J, Xu Y, Li X N, Wang L, Wang H J. Mesoporous Au3Pd film on Ni foam: A self-supported electrocatalyst for efficient synthesis of ammonia[J]. ACS Appl. Mater. Inter., 2020, 12(1): 436-442.
doi: 10.1021/acsami.9b14187
URL
[31]
Rahaman M, Dutta A, Broekmann P. Size-Dependent activity of palladium nanoparticles: Efficient conversion of CO2 into formate at low overpotentials[J]. ChemSusChem, 2017, 10(8): 1733-1741.
doi: 10.1002/cssc.201601778
pmid: 28101986
[32]
Wang X G, Wang W M, Qi Z, Zhao C C, Ji H, Zhang Z H. Novel raney-like nanoporous Pd catalyst with superior electrocatalytic activity towards ethanol electro-oxidation[J]. Int. J. Hydrog. Energy, 2012, 37(3): 2579-2587.
doi: 10.1016/j.ijhydene.2011.11.016
URL
[33]
Smolenkov A D, Rodin I A, Shpigun O A. Spectrophotometric and fluorometric methods for the determination of hydrazine and its methylated analogues[J]. J. Anal. Chem., 2012, 67(2): 98-113.
doi: 10.1134/S1061934812020116
URL
[34]
Cao N, Zheng G F. Aqueous electrocatalytic N2 reduction under ambient conditions[J]. Nano Res., 2018, 11(6): 2992-3008.
doi: 10.1007/s12274-018-1987-y
URL
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons