Corresponding Author

Yan-Li Chen(chenyl@cczu.edu.cn);
Zhi-Dong Chen(zdchen@cczu.edu.cn)


Since the development of acid copper plating technology, the role of additives is indispensable. In addition to the main salt copper sulfate and supporting electrolyte sulfuric acid, suppressors, accelerators, levelers and chlorine ions (Cl-) are also required to be added into the plating solution. Appropriate additive system can have a significant impact on the coating or the plating solution, which can help improve the quality of the coating and increase the brightness of the coating. Through electrochemical measurement, vibrational spectroscopy, scanning probe microscopy, molecular dynamics simulation and other methods, researches have a deeper understanding in the adsorption configuration of some additives on the copper electrode surface and the changes in the electroplating process. Surface-enhanced Raman spectroscopy (SERS) is a powerful technique that yields vibrational information with ultra-high sensitivity. Enhancements of up to 1010 have been achieved in some systems, which provides sensitivity up to single molecule level. Therefore, SERS technique is one of the main methods to study the adsorption structure and mechanism of additives. In this paper, the competitive adsorption behaviors of benzotriazole (BTAH), 3-mercapto-1-propanesulfonate (MPS) and Cl- in an acidic solution on the copper electrode were investigated by in-situ electrochemical surface-enhanced Raman spectroscopy (EC-SERS). It was found that in the positive potential range, the adsorption behavior of BTAH molecules was mainly through the formation of [Cu(BTA)]n polymer film on the copper electrode surface by the triazole ring; with the negative shift of the potential, the polymer film was gradually transformed into the BTAH molecular. The MPS was mainly adsorbed on the copper electrode by the sulfhydryl end. Cl- mainly existed in the form of Cu-Cl, and the active sites occupying the surface of the electrode had a synergistic effect with MPS. The electroplating process on the copper foil also verified the strong adsorption of BTAH, and the presence of small copper particles on the copper foil also confirmed that MPS and Cl- have a synergistic effect, which promotes the local deposition of copper. As the only technical method that can realize nano-level electronic interconnection, electronic electroplating is the main direction of future research. Related additive basic research is also indispensable. In the process of copper electroplating, the interfacial competitive adsorption of additives and their mechanism of action need more in-depth study. It is hoped that this study will play an important guiding role in the development of electroplating additives and the improvement of electroplating technology in the future.

Graphical Abstract


benzotriazole, 3-mercapto-1-propane sulfonate, surface enhanced Raman spectroscopy, adsorption

Publication Date


Online Available Date


Revised Date


Received Date



[1] Frost G, Ladani L. Development of high-temperature-resistant seed layer for electrodeposition of copper for microelectronic applications[J]. J. Electron. Mater., 2020, 49(2): 1387-1395.
doi: 10.1007/s11664-019-07826-y URL

[2] Lee P T, Chang C H, Lee C Y, Wu Y S, Yang C H, Ho C E. High-speed electrodeposition for Cu pillar fabrication and Cu pillar adhesion to an ajinomoto build-up film (ABF)[J]. Mater. Des., 2021, 206: 109830.
doi: 10.1016/j.matdes.2021.109830 URL

[3] Shi X B, Yan W, Yang Z G, Ren Y, Shan Y Y, Yang K. Effect of Cu alloying on strain capacity of Cu-bearing pipeline steels[J]. ISIJ Int., 2020, 60(4): 792-798.
doi: 10.2355/isijinternational.ISIJINT-2019-499 URL

[4] Mahdi J M, Lohrasbi S, Ganji D D, Nsofor E C. Simultaneous energy storage and recovery in the triplex-tube heat exchanger with PCM, copper fins and Al2O3 nanoparticles[J]. Energy Conv. Manag., 2019, 180: 949-961.
doi: 10.1016/j.enconman.2018.11.038 URL

[5] Jin L(金磊), Yang J Q(杨家强), Yang F Z(杨防祖), Zhan D P(詹东平), Tian Z Q(田中群), Zhou S M(周绍民). Research progresses of copper interconnection in chips[J]. J. Electrochem.(电化学), 2020, 26(4): 521-530.
doi: 10.13208/j.electrochem.200212

[6] Yin L(殷列), Wang Z L(王增林). Behavior of copper electrodeposition in copper electroplating solution with different PEG molecular weight[J]. J. Electrochem.(电化学), 2008, 14(4): 431-435.

[7] Zhang L M(张立茗), Fang J L(方景礼), Yuan G W(袁国伟), Shen P (沈品华). Practical plating additive[M]. China: Chemical Industry Press, 2007.

[8] Wang Q, Tan B M, Gao B H, Tian S Y, Han C Y, Yang L. Study on the adsorption and inhibition mechanism of 1,2,4-triazole on copper surface in copper interconnection CMP[J]. ECS J. Solid State Sci. Technol., 2019, 8(6): P313-P318.
doi: 10.1149/2.0121906jss URL

[9] Jin Y, Sui Y F, Wen L, Ye F M, Sun M, Wang Q M. Competitive adsorption of PEG and SPS on copper surface in acidic electrolyte containing Cl-[J]. J. Electrochem. Soc., 2013, 160(1): D20-D27.
doi: 10.1149/2.021302jes URL

[10] Hai N T M, Huynh T T M, Fluegel A, Arnold M, Mayer D, Reckien W, Bredow T, Broekmann P. Competitive anion/anion interactions on copper surfaces relevant for Damascene electroplating[J]. Electrochim. Acta, 2012, 70: 286-295.
doi: 10.1016/j.electacta.2012.03.054 URL

[11] Shen J, Luo W, Dong W H, Li M. Seventeenth International Conference on Electronic Packaging Technology (ICEPT), August 16-19, 2016[C]. China: IEEE, 2016.

[12] Lee M H, Kim M J, Kim J J. Competitive adsorption between bromide ions and bis(3-Sulfopropyl)-Disulfide for Cu microvia filling[J]. Electrochim. Acta, 2021, 370: 137707.
doi: 10.1016/j.electacta.2020.137707 URL

[13] Wang C(王翀), Peng C(彭川), Xiang J(向静), Chen Y M(陈苑明), He W(何为), Su X H(苏新虹), Luo Y Y(罗毓瑶). Research and application of copper electroplating in interconnection of printed circuit board[J]. J. Electrochem.(电化学), 2021, 27(3): 257-268.

[14] Wu H Y, Wang Y, Li Z Y, Zhu W H. Investigations of the electrochemical performance and filling effects of additives on electroplating process of TSV[J]. Sci. Rep., 2020, 10(1): 9204.
doi: 10.1038/s41598-020-66191-7 URL

[15] Finsgar M, Milosev I. Inhibition of copper corrosion by 1,2,3-benzotriazole: a review[J]. Corrosion Sci., 2010, 52(9): 2737-2749.
doi: 10.1016/j.corsci.2010.05.002 URL

[16] de Moraes A C M, Siqueira J L P, Barbosa L L, Carlos I A. Voltammetric study of the influence of benzotriazole on copper deposition from a sulphuric plating bath[J]. J. Appl. Electrochem., 2009, 39(3): 369-375.
doi: 10.1007/s10800-008-9680-6 URL

[17] Wei P J(韦萍洁), Yuan Y X(袁亚仙), Xu M M(徐敏敏), Yao J L(姚建林), Gu R A(顾仁敖). Electrochemical and surface enhanced Raman spectroscopic studies of benzimidazole on nickel electrode[J]. J. Electrochem.(电化学), 2014, 20(4): 349-352.

[18] Antonijevic M M, Milic S M, Petrovic M B. Films formed on copper surface in chloride media in the presence of azoles[J]. Corrosion Sci., 2009, 51(6): 1228-1237.
doi: 10.1016/j.corsci.2009.03.026 URL

[19] Li F T, Wang Z K, Jiang Y Y, Li C L, Sun S Q, Chen S G, Hu S Q. DFT study on the adsorption of deprotonated benzotriazole on the defective copper surfaces[J]. Corrosion Sci., 2021, 186: 109458.
doi: 10.1016/j.corsci.2021.109458 URL

[20] Thomas S, Venkateswaran S, Kapoor S, D’Cunha R, Mukherjee T. Surface enhanced Raman scattering of benzotriazole: a molecular orientational study[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2004, 60(1-2): 25-29.
doi: 10.1016/S1386-1425(03)00213-0 URL

[21] Chant H Y H, Weaver M J. A vibrational structural analysis of benzotriazole adsorption and phase film formation on copper using surface-enhanced Raman spectroscopy[J]. Langmuir, 1999, 15(9): 3348-3355.
doi: 10.1021/la981724f URL

[22] Bastidas D M. Adsorption of benzotriazole on copper surfaces in a hydrochloric acid solution[J]. Surf. Interface Anal., 2006, 38(7): 1146-1152.
doi: 10.1002/sia.2371 URL

[23] Honesty N R, Gewirth A A. Shell-isolated nanoparticle enhanced Raman spectroscopy(SHINERS) investigation of benzotriazole film formation on Cu(100), Cu(111), and Cu(poly)[J]. J. Raman Spectrosc., 2012, 43(1): 46-50.
doi: 10.1002/jrs.2989 URL

[24] Cao P G(曹佩根), Yao J L(姚建林), Zheng J W(郑军伟), Gu R A(顾仁敖), Tian Z Q(田中群). Comparative study of inhibition effects of benzotriazole for metals in neutral solutions as observed with surface-enhanced Raman spectroscopy[J]. Langmuir, 2002, 18(1): 100-104.
doi: 10.1021/la010575p URL

[25] Armstrong M J, Muller R H. In situ scanning tunneling microscopy of copper deposition with benzotriazole[J]. J. Electrochem. Soc., 1991, 138(8): 2303-2307.
doi: 10.1149/1.2085965 URL

[26] Farndon E E, Walsh F C, Campbell S A. Effect of thiourea, benzotriazole and 4,5-dithiaoctane-1,8-disulphonic acid on the kinetics of copper deposition from dilute acid sulphate solutions[J]. J. Appl. Electrochem., 1995, 25(6): 574-583.
doi: 10.1007/BF00573215 URL

[27] Schmidt W U, Alkire R C, Gewirth A A. Mechanic study of copper deposition onto gold surfaces by scaling and spectral analysis of in situ atomic force microscopic images[J]. J. Electrochem. Soc., 1996, 143(10): 3122-3132.
doi: 10.1149/1.1837174 URL

[28] Kim J J, Kim S K, Bae J U. Investigation of copper deposition in the presence of benzotriazole[J]. Thin Solid Films, 2002, 415(1-2): 101-107.
doi: 10.1016/S0040-6090(02)00529-1 URL

[29] Zhao S H, Pang K N, Wang X J, Xiao N. Function of sulfhydryl (-HS) group during microvia filling by copper plating[J]. J. Electrochem. Soc., 2020, 167(11): 112502.
doi: 10.1149/1945-7111/aba00c URL

[30] Li Z, Tan B Z, Shi M H, Luo J Y, Hao Z F, He J, Yang G N, Cui C Q. Bis-(sodium sulfoethyl)-disulfide: A promising accelerator for super-conformal copper electrodeposition with wide operating concentration ranges[J]. J. Electrochem. Soc., 2020, 167(4): 042508.
doi: 10.1149/1945-7111/ab7b85 URL

[31] Song S J, Choi S R, Kim J G, Kim H G. Effect of molecular weight of polyethylene glycol on copper electrodeposition in the presence of bis-3-sulfopropyl-disulfide[J]. Int. J. Electrochem. Sci., 2016, 11(12): 10067-10079.

[32] Schultz Z D, Feng Z V, Biggin M E, Gewirth A A. Vibrational spectroscopic and mass spectrometric studies of the interaction of bis(3-sulfopropyl)-disulfide with Cu surfaces[J]. J. Electrochem. Soc., 2006, 153(2): C97-C107.
doi: 10.1149/1.2139952 URL

[33] Zhong Q(钟琴). Effect of additives MPS, PEG, Cl- on electrodeposition of copper[D]. Chongqing: Chongqing University, 2010.

[34] Wang Y(王义). Study on the properties and mechanism of copper microvia filling additive[D]. Jiangxi: Jiangxi University of Science and Technology, 2018.

[35] Dow W P, Li C C, Lin M W, Su G W, Huang C C. Copper fill of microvia using a thiol-modified Cu seed layer and various levelers[J]. J. Electrochem. Soc., 2009, 156(8): D314-D320.
doi: 10.1149/1.3147273 URL

[36] Gu W, Fan X M, Yao J L, Ren B, Gu R A, Tian Z Q. Investigation on surface-enhanced Raman scattering activity on an ex situ ORC roughened nickel electrode[J]. J. Raman Spectrosc., 2009, 40(4): 405-410.
doi: 10.1002/jrs.2141 URL

[37] Yuan Y X, Han S Y, Wang M, Yao J L, Gu R A. Raman spectroscopic studies on surface coordination mechanism of benzotriazole and triphenylphosphine with metals[J]. Vib. Spectrosc., 2009, 51(2): 162-167.
doi: 10.1016/j.vibspec.2009.04.004 URL

[38] Yao H L, Yuan Y X, Gu R A. Negative role of triphenylphosphine in the inhibition of benzotriazole at the Cu surface studied by surface-enhanced Raman spectroscopy[J]. J. Electroanal. Chem., 2004, 573(2): 255-261.
doi: 10.1016/j.jelechem.2004.07.010 URL

[39] Graff M, Bukowska J, Zawada K. Surface enhanced Raman scattering (SERS) of 1-hydroxybenzotriazole adsorbed on a copper electrode surface[J]. J. Electroanal. Chem., 2004, 567(2): 297-303.
doi: 10.1016/j.jelechem.2003.12.048 URL

[40] Yao J L, Ren B, Huang Z F, Cao P G, Gu R A, Tian Z Q. Extending surface Raman spectroscopy to transition metals for practical applications IV. A study on corrosion inhibition of benzotriazole on bare Fe electrodes[J]. Electro-chim. Acta, 2003, 48(9): 1263-1271.
doi: 10.1016/S0013-4686(02)00834-4 URL

[41] Yuan Y X(袁亚仙), Yao J L(姚建林), Gu R A(顾仁敖). Electrochemical surface enhanced Raman spectroscopic studies on the adsorption of benzotriazole at Cu electrode in non-aqueous solution[J]. Acta Chim. Sinica(化学学报), 2006, 64(4): 273-277.

[42] Kudelski A. Structures of monolayers formed from different HS-(CH2)2-X thiols on gold, silver and copper: Comparitive studies by surface-enhanced Raman scattering[J]. J. Raman Spectrosc., 2003, 34(11): 853-862.
doi: 10.1002/jrs.1062 URL

[43] Pasquale M A, Bolzan A E, Guida J A, Piatti R C V, Arvia A J, Piro O E, Castellano E E. A new polymeric [Cu(SO3(CH2)3S-S(CH2)3SO3)(H2O)4]n complex molecule produced from constituents of a super-conformational copper plating bath: Crystal structure, infrared and Raman spectra and thermal behaviour[J]. Solid State Sci., 2007, 9(9): 862-868.
doi: 10.1016/j.solidstatesciences.2007.06.004 URL

[44] Schmitt K G, Schmidt R, Von-Horsten H F, Vazhenin G, Gewirth A A. 3-mercapto-1-propanesulfonate for Cu electrodeposition studied by in situ shell-isolated nanoparticle-enhanced Raman spectroscopy, density functional theory calculations, and cyclic voltammetry[J]. J. Phys. Chem. C, 2015, 119(41): 23453-23462.
doi: 10.1021/acs.jpcc.5b06274 URL

[45] Lin Z B, Tian J H, Xie B G, Tang Y A, Sun J J, Chen G N, Ren B, Mao B W, Tian Z Q. Electrochemical and in situ SERS studies on the adsorption of 2-hydroxypyridine and polyethyleneimine during silver electroplating[J]. J. Phys. Chem. C, 2009, 113(21): 9224-9229.
doi: 10.1021/jp809761f URL

[46] An W J(安文娟). Study on effect of sulfur and nitrogen-containing additives on roughness of acid electroplated copper and its mechanism[D]. Jiangxi: Jiangxi University of Science and Technology, 2019.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.