Corresponding Author

Da-Quan Yu(yudaquan@xmu.edu.cn);
Ming Li(mingli90@sjtu.edu.cn)


With the slow development of Moore's Law, the high density and miniaturization of microelectronic devices put forward higher requirements for advanced packaging technology. As a key technology in 2.5D/3D packaging, interposer technology has been extensively studied. According to different interposer materials, it is mainly divided into organic interposer, silicon interposer and glass interposer. Compared with the through silicon via (TSV) interconnection, the through glass via (TGV) interposer has received extensive attention in the 2.5D/3D advanced packaging field for its advantages of excellent high-frequency electrical characteristics, simple process, low cost, and adjustable coefficient of thermal expansion (CTE). However, the thermal conductivity of glass (about 1 W·m-1·K-1) is much lower than that of silicon (about 150 W·m-1·K-1), thus, the glass interposer has serious heat dissipation problems. In order to obtain a high-quality TGV interposer, not only an efficient and low-cost via preparation process, but also a defect-free filling process is required. The challenges faced by glass interposer is mainly concentrated in these two aspects. This review firstly introduces the preparation process of TGV, such as ultra-sonic drilling (USD), ultra-sonic high speed drilling (USHD), wet etching, deep reactive ion etching (DRIE), photosensitive glass, laser etching, laser induced deep etching (LIDE), etc. Then it summarizes the defect-free filling of TGV, and outlines several filling mechanisms and some current filling processes of TGV, such as bottom-up filling mechanisms, butterfly filling mechanisms and conformal filling mechanisms. Among the filling mechanisms of the above three filling methods, the filling method of bottom-up is the most studied one, and many scholars have given relevant explanations. Currently, the main ones that are commonly used are the diffusion-consumption mechanism, curvature enhanced adsorbate coverage mechanism (CEAC), convection dependent adsorption mechanism (CDA), and S-shaped negative differential resistance theory. In the process of TGV filling, the type and concentration of base bath, additives and electroplating process will affect the filling status of TGV. At present, the constant current plating mode is most commonly used in the process of TGV filling. Then the research progress of TGV electroplating additives is introduced, including the action mechanism of typical additives and the current research status of some new additives. Through glass via technology can be filled with the synergistic action of accelerators, suppressors and levelers. Finally, the practical application of TGV is briefly reviewed, for example, glass interposer is used in 3D integrated passive device (IPD), embedded glass fan-out technology (eGFO), integrated antenna packaging, micro-electro-mechanical system (MEMS), multi-chip module packaging, as well as the applications in the field of optical integration technology.

Graphical Abstract


interposer, through glass via, filling mechanisms, filling process, additives

Publication Date


Online Available Date


Revised Date


Received Date



[1] Sukumaran V, Kumar G, Ramachandran K, Suzuki Y, Demir K, Sato Y, Seki T, Sundaram V, Tummala R R. Design, fabrication, and characterization of ultrathin 3-D glass interposers with through-package-vias at same pitch as TSVs in silicon[J]. IEEE Trans. Compon. Pack. Manuf. Technol., 2014, 4(5): 786-795.

[2] Hsieh M C, Kang K T, Choi H C, Kim Y C. International Microsystems Packaging Assembly and Circuits Technology Conference, Taipei, October 26-28, 2016[C]. Piscataway: IEEE, 2016.

[3] Hsieh M, Lin S, Hsu I, Chen C Y, Cho N J. 2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition, Warsaw, September 10-13, 2017[C]. Piscataway: IEEE, 2018.

[4] Usman A, Shah E, Satishprasad N B, Chen J L, Bohlemann S A, Shami S H, Eftekhar A A, Adibi A. Interposer technologies for high-performance applications[J]. IEEE Trans. Compon. Pack. Manuf. Technol., 2017, 7(6): 819-828.

[5] Kuramochi S, Kudo H, Akazawa M, Mawatari H, Tanaka M, Fukuoka Y. 2016 6th Electronic System-Integration Technology Conference (ESTC), Grenoble, September 13-15, 2016[C]. Piscataway: IEEE, 2016.

[6] Kuramochi S, Koiwa S, Nagano H, Iida J, Akazawa M, Mawatari H, Suzuki K, Fukuoka Y. 2016 Pan Pacific Microelectronics Symposium (Pan Pacific), Big Island, HI, January 25-28, 2016[C]. Piscataway: IEEE, 2016.

[7] Ohtsuki C, Kokubo T, Yamamuro T. Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid[J]. J. Non-Cryst. Solids, 1992, 143(1): 84-92.
doi: 10.1016/S0022-3093(05)80556-3 URL

[8] Töpper M, Ndip I, Erxleben R, Brusberg L, Nissen N, Schröder H, Yamamoto H, Todt G, Reichl H. 2010 Proceedings 60th Electronic Components and Technology Conference, Las Vegas, NV, June 1-4, 2010[C]. Piscataway: IEEE, 2010.

[9] Ogutu P G. Hybrid metallization of glass and superconformal filling of through glass vias for interposer application[D]. Binghamton: State University of New York at Binghamton, 2015.

[10] Sukumaran V, Bandyopadhyay T, Sundaram V, Tummala R. Low-cost thin glass interposers as a superior alternative to silicon and organic interposers for packaging of 3-D ICs[J]. IEEE Trans. Compon. Pack. Manuf. Technol., 2012, 2(9): 1426-1433.

[11] Garrou P, Koyanagi M, Ramm P. Handbook of 3D integration: volume 3-3D process technology[M]. Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014.

[12] Wang Q W(王强文), Guo Y H(郭育华), Liu J J(刘建军), Wang Y L(王运龙). High heat dissipation performance of the TGV interposer[J]. Micronanoelectron. Technol.(微纳电子技术), 2021, 58(2): 177-183.

[13] Zheng L, Zhang Y, Zhang X, Bakir M S. 2015 IEEE 65th Electronic Components and Technology Conference, San Diego, CA, May 26-29, 2015[C]. Piscataway: IEEE, 2015.

[14] Lai W C, Chuang H H, Tsai C H, Yeh E H, Lin C H, Peng T H, Yen L J, Liao W S, Hung J N, Sheu C C, Yu C H, Wang C T, Yee K C, Yu D. 2013 IEEE International Electron Devices Meeting, Washington, DC, December 9-11, 2013[C]. Piscataway: IEEE, 2014.

[15] LPKF. Through glass via (TGV) wafer[EB/OL]. (2018-02-05). https://www.vitrion.com/en/applications/through-glass-vias-tgv/

[16] Ostholt R, Ambrosius N, Kruger R A. Proceedings of the 5th Electronics System-integration Technology Conference (ESTC), Helsinki, September 16-18, 2014[C]. Piscataway: IEEE, 2014.

[17] Shacham-Diamand Y, Osaka T, Datta M, Ohba T. Advanced nanoscale ULSI interconnects: Fundamentals and applications[M]. New York: Springer, 2009.

[18] Su W, Yao L B, Yang F, Li P Y, Chen J, Liang L F. Electroless plating of copper on surface-modified glass substrate[J]. Appl. Surf. Sci., 2011, 257(18): 8067-8071.
doi: 10.1016/j.apsusc.2011.04.100 URL

[19] Huang T, Sundaram V, Raj P M, Sharma H, Tummala R. 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), Orlando, FL, May 27-30, 2014[C]. Piscataway: IEEE, 2014.

[20] Xie D(谢迪), Li H(李浩), Wang C X(王从香), Cui K(崔凯), Hu Y F(胡永芳). Study on technology of through glass via for 3D integration package[J]. Electronics & Packaging(电子与封装), 2021, 21(7): 20-25.

[21] Wang B K, Chen Y A, Shorey A, Piech G. 2012 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference, Taipei, October 24-26, 2012[C]. Piscataway: IEEE, 2013.

[22] West A C, Mayer S, Reid J. A superfilling model that predicts bump formation[J]. Electrochem. Solid State Lett., 2001, 4(7): C50-C53.
doi: 10.1149/1.1375856 URL

[23] Moffat T P, Wheeler D, Kim S K, Josell D. Curvature enhanced adsorbate coverage mechanism for bottom-up superfilling and bump control in damascene processing[J]. Electrochim. Acta, 2007, 53(1): 145-154.
doi: 10.1016/j.electacta.2007.03.025 URL

[24] Dow W P, Yen M Y, Liao S Z, Chiu Y D, Huang H C. Filling mechanism in microvia metallization by copper electroplating[J]. Electrochim. Acta, 2008, 53(28): 8228-8237.
doi: 10.1016/j.electacta.2008.06.042 URL

[25] Moffat T P, Josell D. Extreme bottom-up superfilling of through-silicon-vias by damascene processing: suppressor disruption, positive feedback and turing patterns[J]. J. Electrochem. Soc., 2012, 159(4): D208-D216.
doi: 10.1149/2.040204jes URL

[26] Dow W P, Chen H H, Yen M Y, Chen W H, Hsu K H, Chuang P Y, Ishizuka H, Sakagawa N, Kimizuka R. Through-hole filling by copper electroplating[J]. J. Electrochem. Soc., 2008, 155(12): D750-D757.
doi: 10.1149/1.2988134 URL

[27] Dow W P, Liu D H, Lu C W, Chen C H, Yan J J, Huang S M. Through-hole filling by copper electroplating using a single organic additive[J]. Electrochem. Solid State Lett., 2011, 14(1): D13-D15.
doi: 10.1149/1.3511757 URL

[28] Ogutu P, Fey E, Dimitrov N. Superconformal filling of through vias in glass interposers[J]. ECS Electrochem. Lett., 2014, 3(8): D30-D32.
doi: 10.1149/2.0081408eel URL

[29] Ogutu P, Fey E, Dimitrov N. Superconformal filling of high aspect ratio through glass vias (TGV) for interposer applications using TNBT and NTBC additives[J]. J. Electrochem. Soc., 2015, 162(9): D457-D464.
doi: 10.1149/2.0641509jes URL

[30] Fey E, Li J X, Dimitrov N. Fast and cost-effective superconformal filling of high aspect ratio through glass vias using MTT additive[J]. J. Electrochem. Soc., 2017, 164(6): D289-D296.
doi: 10.1149/2.0741706jes URL

[31] Chang Y H, Tseng P L, Lin J C, Chen J C, Huang M C, Lin H Y, Pollard S, Mazumder P. Communication-defect-free filling of high aspect ratio through vias in ultrathin glass[J]. J. Electrochem. Soc., 2018, 166(1): D3155-D3157.
doi: 10.1149/2.0181901jes URL

[32] Wu S S, Ling H Q, Xie Y T, Li M, Yu D Q. 2020 21st International Conference on Electronic Packaging Technology (ICEPT), Guangzhou, August 12-15, 2020[C]. Piscataway: IEEE, 2020.

[33] Xiao H B, Wang F L, Wang Y, He H, Zhu W H. Effect of ultrasound on copper filling of high aspect ratio through-silicon via (TSV)[J]. J. Electrochem. Soc., 2017, 164(4): D126-D129.
doi: 10.1149/2.0301704jes URL

[34] Wang F L, Zeng P, Wang Y, Ren X Y, Xiao H B, Zhu W H. High-speed and high-quality TSV filling with the direct ultrasonic agitation for copper electrodeposition[J]. Microelectron. Eng., 2017, 180: 30-34.
doi: 10.1016/j.mee.2017.05.052 URL

[35] Xie Y T(谢怡彤), Wu S S(吴珊珊), Li M(李明).一种填充玻璃转接板通孔的双电源双阳极电镀装置及方法: 中国, 202010042855.6[P]. 2020-05-15.

[36] Kim I R, Park J K, Chu Y C, Jung J P. High speed Cu filling into TSV by pulsed current for 3 dimensional chip stacking[J]. Korean J. Met. Mater., 2010, 48(7): 667-673.

[37] Hong S C, Lee W G, Kim W J, Kim J H, Jung J P. Reduction of defects in TSV filled with Cu by high-speed 3-step PPR for 3D Si chip stacking[J]. Microelectron. Reliab., 2011, 51(12): 2228-2235.
doi: 10.1016/j.microrel.2011.06.031 URL

[38] Chen Y(陈杨), Cheng J(程骄), Wang C(王翀), He W(何为), Zhu K(朱凯), Xiao D J(肖定军). The influence factors of through-hole copper plating at high current density[J]. Plat. Finish.(电镀与精饰), 2015, 37(8): 23-27.

[39] Lai Z Q(赖志强). Research and application of high speed copper electroplating for the interconnection micro-holes of printed circuit board[D]. Chengdu: University of Electronic Science and Technology of China(电子科技大学), 2020.

[40] Xu L H, Dixit P, Miao J, Pang J H L, Zhang X, Tu K N, Preisser R. Through-wafer electroplated copper interconnect with ultrafine grains and high density of nanotwins[J]. Appl. Phys. Lett., 2007, 90(3): 033111.
doi: 10.1063/1.2432284 URL

[41] Jin S, Seo S, Wang G, Too B. Electrodeposition of nanotwin Cu by pulse current for through-Si-via (TSV) process[J]. J. Nanosci. Nanotechnol., 2016, 16(5): 5410-5414.
doi: 10.1166/jnn.2016.12244 URL

[42] Sun F L, Liu Z Q, Li C F, Zhu Q S, Zhang H, Suganuma K. Bottom-up electrodeposition of large-scale nanotwinned copper within 3D through silicon via[J]. Materials, 2018, 11(2): 319.
doi: 10.3390/ma11020319 URL

[43] Guymon C G, Harb J N, Rowley R L, Wheeler D R. MPSA effects on copper electrodeposition investigated by molecular dynamics simulations[J]. J. Chem. Phys., 2008, 128(4): 044717.
doi: 10.1063/1.2824928 URL

[44] Peykova M, Michailova E, Stoychev D, Milchev A. Galvanostatic studies of the nucleation and growth kinetics of copper in the presence of surfactants[J]. Electrochim. Acta, 1995, 40(16): 2595-2601.
doi: 10.1016/0013-4686(95)00241-6 URL

[45] Stoychev D, Vitanova I, Bujukliev R, Petkova N, Popova I, Pojarliev I. Effect of some dialkyl-, diaryl-, and diarylalkyl-disulphide derivatives on copper electrodeposition[J]. J. Appl. Electrochem., 1992, 22(10): 978-986.
doi: 10.1007/BF01024147 URL

[46] Hai N T M, Huynh T T M, Fluegel A, Arnold M, Mayer D, Reckien W, Bredow T, Broekmann P. Competitive anion/anion interactions on copper surfaces relevant for Damascene electroplating[J]. Electrochim. Acta, 2012, 70: 286-295.
doi: 10.1016/j.electacta.2012.03.054 URL

[47] Moffat T P, Baker B, Wheeler D, Josell D. Accelerator aging effects during copper electrodeposition[J]. Electrochem. Solid State Lett., 2003, 6(4): C59-C62.
doi: 10.1149/1.1553936 URL

[48] Kim S K, Kim J J. Superfilling evolution in Cu electrodeposition: dependence on the aging time of the accelerator[J]. Electrochem. Solid State Lett., 2004, 7(9): C98-C100.
doi: 10.1149/1.1777552 URL

[49] Tan M, Guymon C, Wheeler D R, Harb J N. The role of SPS, MPSA, and chloride in additive systems for copper electrodeposition[J]. J. Electrochem. Soc., 2007, 154(2): D78-D81.
doi: 10.1149/1.2401057 URL

[50] Pasquale M A, Gassa L M, Arvia A J. Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives[J]. Electrochim. Acta, 2008, 53(20): 5891-5904.
doi: 10.1016/j.electacta.2008.03.073 URL

[51] Kim J J, Kim S K, Kim Y S. Catalytic behavior of 3-mercapto-1-propane sulfonic acid on Cu electrodeposition and its effect on Cu film properties for CMOS device metallization[J]. J. Electroanal. Chem., 2003, 542: 61-66.
doi: 10.1016/S0022-0728(02)01450-X URL

[52] Li L Q(李立清), An W J(安文娟), Wang Y(王义). Action mechanism of MPS and chloride ions in electroplating copper microvia filling[J]. Surf. Technol.(表面技术), 2018, 47(5): 122-129.

[53] Dow W P, Chiu Y D, Yen M Y. Microvia filling by Cu electroplating over a Au seed layer modified by a disulfide[J]. J. Electrochem. Soc., 2009, 156(4): D155-D167.
doi: 10.1149/1.3078407 URL

[54] Yokoi M, Konishi S, Hayashi T. Adsorption behavior of polyoxyethyleneglycole on the copper surface in an acid copper sulfate bath[J]. Denki Kagaku, 1984, 52(4): 218-223.

[55] Feng Z V, Li X, Gewirth A A. Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: a surface-enhanced Raman study[J]. J. Phys. Chem. B, 2003, 107(35): 9415-9423.
doi: 10.1021/jp034875m URL

[56] Willey M J, West A C. Microfluidic studies of adsorption and desorption of polyethylene glycol during copper electrodeposition[J]. J. Electrochem. Soc., 2006, 153(10): C728-C734.
doi: 10.1149/1.2335587 URL

[57] Josell D, Moffat T P. Superconformal copper deposition in through silicon vias by suppression-breakdown[J]. J. Electrochem. Soc., 2018, 165(2): D23-D30.
doi: 10.1149/2.0061802jes URL

[58] Gallaway J W, West A C. PEG, PPG, and their triblock copolymers as suppressors in copper electroplating[J]. J. Electrochem. Soc., 2008, 155(10): D632-D639.
doi: 10.1149/1.2958309 URL

[59] Gallaway J W, Willey M J, West A C. Copper filling of 100 nm trenches using PEG, PPG, and a triblock copolymer as plating suppressors[J]. J. Electrochem. Soc., 2009, 156(8): D287-D295.
doi: 10.1149/1.3142422 URL

[60] Josell D, Moffat T P. Extreme bottom-up filling of through silicon vias and damascene trenches with gold in a sulfite electrolyte[J]. J. Electrochem. Soc., 2013, 160(12): D3035-D3039.
doi: 10.1149/2.007312jes URL

[61] Xiao N(肖宁). Study on microvia filling performances and action mechanisms of EPE inhibitors in copper electroplating process[D]. Harbin: Harbin Institute of Technology(哈尔滨工业大学), 2013.

[62] Li Y B, Wang W, Li Y L. Adsorption behavior and related mechanism of Janus Green B during copper via-filling process[J]. J. Electrochem. Soc., 2009, 156(4): D119-D124.
doi: 10.1149/1.3071603 URL


[63] Li J, Zhou G Y, Hong Y, Wang C, He W, Wang S X, Chen Y M, Wen Z S, Wang Q Y. Copolymer of pyrrole and 1,4-butanediol diglycidyl as an efficient additive leveler for through-hole copper electroplating[J]. ACS Omega, 2020, 5(10): 4868-4874.
doi: 10.1021/acsomega.9b03691 URL

[64] Wang X, Zhang S T, Chen S J, Tan B C, Guo H L, Wang Y, Qiang Y J, Fu S L, Wen Y N. Effects of 2,2-dithiodip-yridine as a leveler for through-holes filling by copper electroplating[J]. J. Electrochem. Soc., 2019, 166(13): D660-D668.
doi: 10.1149/2.0461913jes

[65] Chen B A, Xu J, Wang L M, Song L F, Wu S Y. Synthesis of quaternary ammonium salts based on diketopyrrolopyrroles skeletons and their applications in copper electroplating[J]. ACS Appl. Mater. Interfaces, 2017, 9(8): 7793-7803.
doi: 10.1021/acsami.6b15400 URL

[66] Haba T, Ikeda K, Uosaki K. Electrochemical and in situ SERS study of the role of an inhibiting additive in selective electrodeposition of copper in sulfuric acid[J]. Electrochem. Commun., 2019, 98: 19-22.
doi: 10.1016/j.elecom.2018.11.007 URL

[67] Liu X D(刘筱笛), Ming P M(明平美), Zhang J Z(张峻中), Li R Q(李润清), Zhao X M(赵西梅). Research and development of the purification technology of electroplating solution[J]. Plat. Finish.(电镀与精饰), 2017, 39(12): 20-24.

[68] Liu C(刘成), Huang T L(黄廷林), Zhao J W(赵建伟). Removal effect of organic matters of different MW during the process of coagulation and adsorption of powdered activated carbon[J]. Water Purif. Technol.(净水技术), 2006, 25(1): 31-33.

[69] Liu W(刘伟), Gao S B(高书宝), Wu D(吴丹), Cai R H(蔡荣华), Huang X P(黄西平), Zhang Q(张琦). The process of membrane extraction separation technique and applications[J]. J. Salt Sci. Chem. Ind.(盐科学与化工), 2013, 42(11): 26-31.

[70] Tummala R, Sundaram V. Impact of 3D ICs with TSV is profound but complex and costly-is there a better way[J]. Chip Scale Review, 2011, 8: 31-32.

[71] Chen L(陈力), Yang X F(杨晓锋), Yu D Q(于大全). Development of through glass via technology[J]. Electronics & Packaging(电子与封装), 2021, 21(4): 5-17.

[72] Lee T C, Chang Y S, Hsu C M, Hsieh S C, Lee P N, Hsieh Y C, Wang L C, Zhang L J. 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, May 30- June 2, 2017[C]. Piscataway: IEEE, 2017.

[73] Watanabe A O, Ali M, Zhang R, Ravichandran S, Kakutani T, Raj P M, Tummala R R, Swaminathan M. 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, June 3-30, 2020[C]. Piscataway: IEEE, 2020.

[74] Yu T, Zhang X D, Chen L, Ren X L, Duan Z M, Yu D Q. 2020 IEEE 70th Electronic Components and Technology Conference, Orlando, FL, June 3-30, 2020[C]. Piscataway: IEEE, 2020.

[75] Lee J Y, Lee S W, Lee S K, Park J H. 2013 IEEE 26th Proceedings IEEE Micro Electro Mechanical Systems (MEMS), Taipei, January 20-24, 2013[C]. Piscataway: IEEE, 2013.

[76] Ma S L, Ren K L, Xia Y M, Yan J, Luo R F, Cai H, Jin Y F, Ma M J, Jin Z H, Chen J. 2016 17th International Conference on Electronic Packaging Technology (ICEPT), Wuhan, August 16-19, 2016[C]. Piscataway: IEEE, 2016.

[77] Iwia T, Sakai T, Mizutani D, Sakuyama S, Iida K, Inaba T, Fujisaki H, Miyazawa Y. 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, May 29-June 1, 2018[C]. Piscataway: IEEE, 2018.

[78] Iwia T, Sakai T, Mizutani D, Sakuyama S, Iida K, Inaba T, Fujisaki H, Tamura A, Miyazawa Y. 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, May 28-31, 2019[C]. Piscataway: IEEE, 2019.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.