Corresponding Author

Zhen He(zhenhe@csu.edu.cn)


Electrodeposition is a solution-based synthesis technique that can be used to fabricate various functional materials on conductive or semiconductive substrates under ambient conditions. Electrodeposition is usually triggered by an artificial electric stimulation (i.e., applied potential/current) to the substrate to oxidize or reduce ions, molecules, or complexes in the deposition solution layer near the substrate surface, which drives this solution layer to depart from its thermodynamic equilibrium and consequently causes the assembly of targeted deposits on the substrate. During electrodeposition, many experimental parameters could affect the properties of the deposits in different ways. To date, many elements (both metals and nonmetals), compounds (e.g., metal oxides, hydroxides, and chalcogenides), and composites have been electrodeposited, mostly as either polycrystalline, textured, or epitaxial films. Among them, the epitaxial films are a kind of single-crystal-like films grown with certain out-of-plane and in-plane orientations. Due to the highly ordered atomic arrangement in epitaxial films, they usually exhibit unique electric and magnetic properties. In this review, the common synthetic routes for the electrodeposition as well as the key experimental parameters that affect the epitaxial growth of the deposits are summarized. Besides, techniques used to characterize epitaxial films are briefly introduced. Furthermore, the electrodeposited functional epitaxial films with special electronic, electromagnetic, and photovoltaic properties are discussed.

Graphical Abstract


electrodeposit, electroplating, thin film, highly oriented

Publication Date


Online Available Date


Revised Date


Received Date



[1] Kang D, Kim T W, Kubota S R, Cardiel A C, Cha H G, Choi K S. Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting[J]. Chem. Rev., 2015, 115(23): 12839-12887.
doi: 10.1021/acs.chemrev.5b00498 URL

[2] Switzer J A, Hodes G. Electrodeposition and chemical bath deposition of functional nanomaterials[J]. MRS Bull., 2010, 35(10): 743-752.
doi: 10.1557/S0883769400051253 URL

[3] Gusley R, Ezzat S, Coffey K R, West A C, Barmak K. Influence of the seed layer and electrolyte on the epitaxial electrodeposition of Co(0001) for the fabrication of single crystal interconnects[J]. J. Electrochem. Soc., 2020, 167(16): 162503.
doi: 10.1149/1945-7111/abcd13 URL

[4] Choi K S, Jang H S, McShane C M, Read C G, Seabold J A. Electrochemical synthesis of inorganic polycrystalline ele-ctrodes with controlled architectures[J]. MRS Bull., 2010, 35(10): 753-760.
doi: 10.1557/mrs2010.504 URL

[5] Zhang Y H, An M Z, Yang P X, Zhang J Q. Recent advances in electroplating of through-hole copper interconnection[J]. Electrocatalysis, 2021, 12(6): 619-627.

doi: 10.1007/s12678-021-00687-2 URL

[6] Gundel A, Devolder T, Chappert C, Schmidt J E, Cortes R, Allongue P. Electrodeposition of Fe/Au(111) ultrathin layers with perpendicular magnetic anisotropy[J]. Phys. B: Condens. Matter, 2004, 354(1-4): 282-285.
doi: 10.1016/j.physb.2004.09.068 URL

[7] Sorenson T A, Morton S A, Waddill G D, Switzer J A. Epitaxial electrodeposition of Fe3O4 thin films on the low-index planes of gold[J]. J. Am. Chem. Soc., 2002, 124(25): 7604-7609.

pmid: 12071770

[8] He Z, Koza J A, Mu G J, Miller A S, Bohannan E W, Switzer J A. Electrodeposition of CoxFe3-xO4 epitaxial films and superlattices[J]. Chem. Mater., 2013, 25(2): 223-232.
doi: 10.1021/cm303289t URL

[9] Koza J A, Hill J C, Demster A C, Switzer J A. Epitaxial electrodeposition of methylammonium lead Iodide perovskites[J]. Chem. Mater., 2016, 28(1): 399-405.

doi: 10.1021/acs.chemmater.5b04524 URL

[10] Luo B, Banik A, Bohannan E W, Switzer J A. Epitaxial electrodeposition of hole transport CuSCN nanorods on Au(111) at the wafer scale and lift-off to produce flexible and transparent foils[J]. Chem. Mater., 2022, 34(3): 970-978.
doi: 10.1021/acs.chemmater.1c02694 URL

[11] Yan Z H, Liu H H, Hao Z M, Yu M, Chen X, Chen J. Electrodeposition of (hydro)oxides for an oxygen evolution electrode[J]. Chem. Sci., 2020, 11(39): 10614-10625.
doi: 10.1039/D0SC01532F URL

[12] Pu J, Shen Z H, Zhong C L, Zhou Q W, Liu J Y, Zhu J, Zhang H G. Electrodeposition technologies for Li-based batteries: New frontiers of energy storage[J]. Adv. Mater., 2019, 32(27): 1903808.

[13] Allongue P, Maroun F. Electrodeposited magnetic layers in the ultrathin limit[J]. MRS Bull., 2010, 35(10): 761-770. [14] Hangarter C M, Liu Y, Pagonis D, Bertocci U, Moffat T P. Electrodeposition of ternary Pt100-x-yCoxNiy alloys[J]. J. Electrochem. Soc., 2014, 161(1): D31-D43.
doi: 10.1149/2.022401jes URL

[15] Herrick R D, Kaplan A S, Chinh B K, Shane M J, Sailor M J, Kavanagh K L, McCreey R L, Zhao J. Room-temperature electrosynthesis of carbonaceous fibers[J]. Adv. Mater., 1995, 7(4): 398-401.
doi: 10.1002/adma.19950070412 URL

[16] Mahenderkar N K, Liu Y C, Koza J A, Switzer J A. Electrodeposited germanium nanowires[J]. ACS Nano, 2014, 8(9): 9524-9530.
doi: 10.1021/nn503784d pmid: 25157832

[17] Munisamy T, Bard A J. Electrodeposition of Si from organic solvents and studies related to initial stages of Si growth[J]. Electrochim. Acta, 2010, 55(11): 3797-3803.
doi: 10.1016/j.electacta.2010.01.097 URL

[18] Kothari H M, Kulp E A, Limmer S J, Poizot P, Bohannan E W, Switzer J A. Electrochemical deposition and characterization of Fe3O4 films produced by the reduction of Fe(III)-triethanolamine[J]. J. Mater. Res., 2006, 21(1): 293-301.
doi: 10.1557/jmr.2006.0030 URL

[19] Koza J A, He Z, Miller A S, Switzer J A. Electrodeposition of crystalline Co3O4-A catalyst for the oxygen evolution reaction[J]. Chem. Mater., 2012, 24(18): 3567-3573.
doi: 10.1021/cm3012205 URL

[20] Koza J A, Schroen I P, Willmering M M, Switzer J A. Electrochemical synthesis and nonvolatile resistance switching of Mn3O4 thin films[J]. Chem. Mater., 2014, 26(15): 4425-4432.
doi: 10.1021/cm5014027 URL

[21] Kulp E A, Kothari H M, Limmer S J, Yang J B, Gudavarthy R V, Bohannan E W, Switzer J A. Electrodeposition of epitaxial magnetite films and ferrihydrite nanoribbons on single-crystal gold[J]. Chem. Mater., 2009, 21(21): 5022-5031.
doi: 10.1021/cm9013514 URL

[22] Hill J C, Koza J A, Switzer J A. Electrodeposition of epitaxial lead Iodide and conversion to textured methylammonium lead Iodide perovskite[J]. ACS Appl. Mater. Interfaces, 2015, 7(47): 26012-26016.
doi: 10.1021/acsami.5b07222 URL

[23] Banik A, Bohannan E W, Switzer J A. Epitaxial electro-deposition of BiI3and topotactic conversion to highly ordered solar light-absorbing perovskite (CH3NH3)3Bi2I9[J]. Chem. Mater., 2020, 32(19): 8367-8372.
doi: 10.1021/acs.chemmater.0c02304 URL

[24] Therese G H A, Kamath P V. Electrochemical synthesis of metal oxides and hydroxides[J]. Chem. Mater., 2000, 12(5): 1195-1204.
doi: 10.1021/cm990447a URL

[25] Yan Z H, Sun H M, Chen X, Liu H H, Zhao Y R, Li H X, Xie W, Cheng F Y, Chen J. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution[J]. Nat. Commun., 2018, 9: 2373.
doi: 10.1038/s41467-018-04788-3 URL

[26] Lv Y, Zhang Z A, Lai Y Q, Liu Y X. Electrodeposition of porous Mg(OH)2 thin films composed of single-crystal nanosheets[J]. J. Electrochem. Soc., 2012, 159(4): D187-D189.
doi: 10.1149/2.019204jes URL

[27] Aghazadeh M, Dalvand S, Hosseinifard M. Facile electrochemical synthesis of uniform β-Co(OH)2 nanoplates for high performance supercapacitors[J]. Ceram. Int., 2014, 40(2): 3485-3493.
doi: 10.1016/j.ceramint.2013.09.081 URL

[28] Kulp E A, Switzer J A. Electrochemical biomineralization: The deposition of calcite with chiral morphologies[J]. J. Am. Chem. Soc., 2007, 129(49): 15120-15121.
doi: 10.1021/ja076303b URL

[29] Limmer S J, Kulp E A, Switzer J A. Epitaxial electrodeposition of ZnO on Au(111) from alkaline solution: Exploiting amphoterism in Zn(II)[J]. Langmuir, 2006, 22(25): 10535-10539.
doi: 10.1021/la061185b URL

[30] Poizot P, Hung C J, Nikiforov M P, Bohannan E W, Switzer J A. An electrochemical method for CuO thin film deposition from aqueous solution[J]. Electrochem. Solid-State Lett., 2003, 6(2): C21-C25.
doi: 10.1149/1.1535753 URL

[31] Han S, Liu S Q, Yin S J, Chen L, He Z. Electrodeposited Co-Doped Fe3O4 thin films as efficient catalysts for the oxygen evolution reaction[J]. Electrochim. Acta, 2016, 210: 942-949.
doi: 10.1016/j.electacta.2016.05.194 URL

[32] Hssi A A, Atourki L, Abouabassi K, Elfanaoui A, Bouabid K, Ihall A, Benmokhtar S, Ouafi M. Growth and characterization of Cu2O for solar cells applications[M]. USA: Amer Inst Physics, 2018. [33] Siegfried M J, Choi K S. Directing the architecture of cuprous oxide crystals during electrochemical growth[J]. Angew. Chem. Int. Ed., 2005, 44(21): 3218-3223.
doi: 10.1002/anie.200463018 URL

[34] Li D J, Liu S Q, Ye G Y, Zhu W W, Zhao K M, Luo M, He Z. One-step electrodeposition of NixFe3-xO4/Ni hybrid nanosheet arrays as highly active and robust electrocatalysts for the oxygen evolution reaction[J]. Green Chem., 2020, 22(5): 1710-1719.
doi: 10.1039/D0GC00168F URL

[35] Zhou S M. Electrodeposition of metals: Principles and methods[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1987. [36] Tu Z M, An M Z, Hu H L. Modern alloy electrodeposition theory and technology[M]. Beijing: National Defense Industry Press, 2016. [37] Paunovic M, Schlesinger M. Fundamentals of electrochemical deposition[M]. USA: John Wiley & Sons, Inc., 2006. [38] Nikiforov M P, Vertegel A, Shumsky M G, Switzer J A. Epitaxial electrodeposition of Fe3O4 on single-crystal Au(111)[J]. Adv. Mater., 2000, 12(18): 1351-1353.
doi: 10.1002/1521-4095(200009)12:18<1351::AID-ADMA1351>3.0.CO;2-# URL

[39] Liu R, Vertegel A A, Bohannan E W, Sorenson T A, Switzer J A. Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold[J]. Chem. Mater., 2001, 13(2): 508-512.
doi: 10.1021/cm000763l URL

[40] Bohannan E W, Shumsky M G, Switzer J A. Epitaxial electrodeposition of copper(I) oxide on single-crystal gold (100)[J]. Chem. Mater., 1999, 11(9): 2289-2291.
doi: 10.1021/cm990304o URL

[41] Bohannan E W, Kothari H M, Nicic I M, Switzer J A. En-antiospecific electrodeposition of chiral CuO films on single-crystal Cu(111)[J]. J. Am. Chem. Soc., 2004, 126(2): 488-489.

pmid: 14719945

[42] Liu R, Kulp E A, Oba F, Bohannan E W, Ernst F, Switzer J A. Epitaxial electrodeposition of high-aspect-ratio Cu2O(110) nanostructures on InP(111)[J]. Chem. Mater., 2005, 17(4): 725-729.
doi: 10.1021/cm048296l URL

[43] Lincot D, Kampmann A, Mokili B, Vedel J, Cortes R, Froment M. Epitaxial electrodeposition of CdTe films on InP from aqueous solutions: role of a chemically deposited CdS intermediate layer[J]. Appl. Phys. Lett., 1995, 67(16): 2355-2357.
doi: 10.1063/1.114343 URL

[44] Switzer J A, Hill J C, Mahenderkar N K, Liu Y C. Nano-meter-thick gold on silicon as a proxy for single-crystal gold for the electrodeposition of epitaxial cuprous oxide thin films[J]. ACS Appl. Mater. Interfaces, 2016, 8(24): 15828-15837.
doi: 10.1021/acsami.6b04552 URL

[45] Mahenderkar N K, Chen Q Z, Liu Y C, Duchild A R, Hofheins S, Chason E, Switzer J A. Epitaxial lift-off of electrodeposited single-crystal gold foils for flexible electronics[J]. Science, 2017, 355(6330): 1203-1206.
doi: 10.1126/science.aam5830 pmid: 28302857

[46] Hull C M, Switzer J A. Electrodeposited epitaxial Cu(100) on Si(100) and lift-off of single crystal-like Cu(100) foils[J]. ACS Appl. Mater. Interfaces, 2018, 10(44): 38596-38602.
doi: 10.1021/acsami.8b13188 URL

[47] Luo B, Banik A, Bohannan E W, Switzer J A. Epitaxial electrodeposition of Cu(111) onto an L-cysteine self-assembled monolayer on Au(111) and epitaxial lift-off of single-crystal-like Cu foils for flexible electronics[J]. J. Phys. Chem. C, 2020, 124(39): 21426-21434.
doi: 10.1021/acs.jpcc.0c05425 URL

[48] Chen Q Z, Switzer J A. Electrodeposition of nanometer-thick epitaxial films of silver onto single-crystal silicon wafers[J]. J. Mater. Chem. C, 2019, 7(6): 1720-1725.
doi: 10.1039/C8TC06002A URL

[49] Switzer J A, Liu R, Bohannan E W, Ernst F. Epitaxial electrodeposition of a crystalline metal oxide onto single-crystalline silicon[J]. J. Phys. Chem. B, 2002, 106(48): 12369-12372.
doi: 10.1021/jp0266188 URL

[50] Switzer J A, Kothari H M, Bohannan E W. Thermodynamic to kinetic transition in epitaxial electrodeposition[J]. J. Phys. Chem. B, 2002, 106(16): 4027-4031.

doi: 10.1021/jp014638o URL

[51] Nakanishi S, Lu G T, Kothari H M, Bohannan E W, Switzer J A. Epitaxial electrodeposition of Prussian blue thin films on single-crystal Au(110)[J]. J. Am. Chem. Soc., 2003, 125(49): 14998-14999.

pmid: 14653729

[52] Gudavarthy R V, Gorantla S, Mu G J, Kulp E A, Gemming T, Eckert J, Switzer J A. Epitaxial electrodeposition of Fe3O4 on single-crystal Ni(111)[J]. Chem. Mater., 2011, 23(8): 2017-2019.
doi: 10.1021/cm2002176 URL

[53] Kelso M V, Tubbesing J Z, Chen Q Z, Switzer J A. Epitaxial electrodeposition of chiral metal surfaces on silicon(643)[J]. J. Am. Chem. Soc., 2018, 140(46): 15812-15819.
doi: 10.1021/jacs.8b09108 URL

[54] Vertegel A A, Bohannan E W, Shumsky M G, Switzer J A. Epitaxial electrodeposition of orthorhombic α-PbO2 on (100)-oriented single crystal Au[J]. J. Electrochem. Soc., 2001, 148(4): C253-C256.
doi: 10.1149/1.1353571 URL

[55] Cheng S Y, Chen G A, Chen Y Q, Huang C C. Effect of deposition potential and bath temperature on the electro-deposition of SnS film[J]. Opt. Mater., 2006, 29(4): 439-444.
doi: 10.1016/j.optmat.2005.10.018 URL

[56] Govindaraju G V, Wheeler G P, Lee D, Choi K S. Methods for electrochemical synthesis and photoelectrochemical characterization for photoelectrodes[J]. Chem. Mater., 2017, 29(1): 355-370.
doi: 10.1021/acs.chemmater.6b03469 URL

[57] Leistner K, Duschek K, Zehner J, Yang M Z, Petr A, Nielsch K, Kavanagh K L. Role of hydrogen evolution during epitaxial electrodeposition of Fe on GaAs[J]. J. Ele-ctrochem. Soc., 2018, 165(4): H3076-H3079. [58] Gusley R, Sentosun K, Ezzat S, Coffey K R, West A C, Barmak K. Electrodeposition of epitaxial Co on Ru(0001)/Al2O3(0001)[J]. J. Electrochem. Soc., 2019, 166(15): D875-D881.
doi: 10.1149/2.1091915jes

[59] Gabe D R. The role of hydrogen in metal electrodeposition processes[J]. J. Appl. Electrochem., 1997, 27(8): 908-915.
doi: 10.1023/A:1018497401365 URL

[60] Liu R, Bohannan E W, Switzer J A, Oba F, Ernst F. Epitaxial electrodeposition of Cu2O films onto InP(001)[J]. Appl. Phys. Lett., 2003, 83(10): 1944-1946.
doi: 10.1063/1.1606503 URL

[61] Liu R, Oba F, Bohannan E W, Ernst F, Switzer J A. Shape control in epitaxial electrodeposition: Cu2O nano-cubes on InP(001)[J]. Chem. Mater., 2003, 15(26): 4882-4885.
doi: 10.1021/cm034807c URL

[62] Hainey M, Robin Y, Amano H, Usami N. Pole figure analysis from electron backscatter diffraction-an effective method of evaluating fiber-textured silicon thin films as seed layers for epitaxy[J]. Appl. Phys. Express, 2019, 12(2): 025501.
doi: 10.7567/1882-0786/aafb26 URL

[63] Wei Y M, Fu Y C, Yan J W, Sun C F, Shi Z, Xie Z X, Wu D Y, Mao B W. Growth and shape-ordering of iron nanostructures on Au single crystalline electrodes in an ionic liquid: A paradigm of magnetostatic coupling[J]. J. Am. Chem. Soc., 2010, 132(23): 8152-8157.
doi: 10.1021/ja1021816 URL

[64] Fu Y C, Yan J W, Wang Y, Tian J H, Zhang H M, Xie Z X, Mao B W. In situ STM studies on the underpotential deposition of antimony on Au(111) and Au(100) in a BMIBF4 ionic liquid[J]. J. Phys. Chem. C, 2007, 111(28): 10467-10477.
doi: 10.1021/jp071162l URL

[65] Lin L G, Yan J W, Wang Y, Fu Y C, Mao B W. An in situ STM study of cobalt electrodeposition on Au(111) in BMIBF4 ionic liquid[J]. J. Exp. Nanosci., 2006, 1(3): 269-278.
doi: 10.1080/17458080601009643 URL

[66] Deng B, Pang Z Q, Chen S L, Li X, Meng C X, Li J Y, Liu M X, Wu J X, Qi Y, Dang W H, Yang H, Zhang Y F, Zhang J, Kang N, Xu H Q, Fu Q, Qiu X H, Gao P, Wei Y J, Liu Z F, Peng H L. Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates[J]. ACS Nano, 2017, 11(12): 12337-12345.
doi: 10.1021/acsnano.7b06196 URL

[67] Geiss R H, Read D T, Seiler D G, Diebold A C, McDonald R, Garner C M, Herr D, Khosla R P, Secula E M. Need for standardization of EBSD measurements for microstructural characterization of thin film structures[M]. USA: AMER INST PHYSICS, 2007.

[68] Cachet H, Cortes R, Froment M, Maurin G. Epitaxial electrodeposition of cadmium selenide thin films on indium phosphide single crystal[J]. J. Solid State Electrochem., 1997, 1(1): 100-107.
doi: 10.1007/s100080050029 URL

[69] Munford M L, Cortes R, Allongue P. The preparation of ideally ordered flat H-Si(111) surfaces[J]. Sens. Mater., 2001, 13(5): 259-269.

[70] Munford M L, Maroun F, Cortes R, Allongue P, Pasa A A. Electrochemical growth of gold on well-defined vicinal H-Si(111) surfaces studied by AFM and XRD[J]. Surf. Sci., 2003, 537(1-3): 95-112.
doi: 10.1016/S0039-6028(03)00563-6 URL

[71] Prod′homme P, Maroun F, Cortes R, Allongue P. Electrochemical growth of ultraflat Au(111) epitaxial buffer layers on H-Si(111)[J]. Appl. Phys. Lett., 2008, 93(17): 171901.
doi: 10.1063/1.3006064 URL

[72] Warren S, Prod′homme P, Maroun F, Allongue P, Cortes R, Ferrero C, Lee T L, Cowie B C C, Walker C J, Ferrer S, Zegenhagen J. Electrochemical Au deposition on stepped Si(111)-H surfaces: 3D versus 2D growth studied by AFM and X-ray diffraction[J]. Surf. Sci., 2009, 603(9): 1212-1220.
doi: 10.1016/j.susc.2009.03.004 URL

[73] Prodhomme P, Warren S, Cortes R, Jurca H F, Maroun F, Allongue P. Epitaxial growth of gold on H-Si(111): The determining role of hydrogen evolution[J]. Chem. Phys. Chem., 2010, 11(13): 2992-3001. [74] Akhtari-Zavareh A, Li W J, Maroun F, Allongue P, Kavanagh K L. Improved chemical and electrical stability of gold silicon contacts via epitaxial electrodeposition[J]. J. Appl. Phys., 2013, 113(6): 063708.
doi: 10.1063/1.4792000 URL

[75] Zambelli T, Munford M L, Pillier F, Bernard M C, Allongue P. Cu electroplating on H-terminated n-Si(111)-properties and structure of n-Si/Cu junctions[J]. J. Electrochem. Soc., 2001, 148(9): C614-C619.
doi: 10.1149/1.1387238 URL

[76] Xin X, Ito K, Dutta A, Kubo Y. Dendrite-free epitaxial growth of lithium metal during charging in Li-O2 batteries[J]. Angew. Chem. Int. Ed., 2018, 57(40): 13206-13210.
doi: 10.1002/anie.201808154 URL

[77] Zheng J X, Zhao Q, Tang T, Yin J F, Quilty C D, Renderos G D, Liu X T, Deng Y, Wang L, Bock D C, Jaye C, Zhang D H, Takeuchi E S, Takeuchi K J, Marschilok A C, Archer L A. Reversible epitaxial electrodeposition of metals in battery anodes[J]. Science, 2019, 366(6465): 645-648.
doi: 10.1126/science.aax6873 URL

[78] Zhang K, Yan Z H, Chen J. Electrodeposition accelerates metal-based batteries[J]. Joule, 2020, 4(1): 10-11.
doi: 10.1016/j.joule.2019.12.012 URL

[79] Chappert C, Fert A, Van Dau F N. The emergence of spin electronics in data storage[J]. Nat. Mater., 2007, 6(11): 813-823.

pmid: 17972936

[80] Gundel A, Cagnon L, Gomes C, Morrone A, Schmidt J, Allongue P. In-situ magnetic measurements of electrodeposited ultrathin Co, Ni and Fe/Au(111) layers[J]. Phys. Chem. Chem. Phys., 2001, 3(16): 3330-3335.
doi: 10.1039/b100547m URL

[81] Di N, Damian A, Maroun F, Allongue P. Influence of potential on the electrodeposition of Co on Au(111) by in situ STM and reflectivity measurements[J]. J. Electro-chem. Soc., 2016, 163(12): D3062-D3068.
doi: 10.1149/2.0091612jes URL

[82] Cagnon L, Gundel A, Devolder T, Morrone A, Chappert C, Schmidt J E, Allongue P. Anion effect in Co/Au(111) electrodeposition: Structure and magnetic behavior[J]. Appl. Surf. Sci., 2000, 164: 22-28.
doi: 10.1016/S0169-4332(00)00330-5 URL

[83] Jurca H F, Damian A, Gougaud C, Thiaudiere D, Cortes R, Maroun F, Allongue P. Epitaxial electrodeposition of Fe on Au(111): Structure, nucleation, and growth mechanisms[J]. J. Phys. Chem. C, 2016, 120(29): 16080-16089.
doi: 10.1021/acs.jpcc.5b12771 URL

[84] Borges J G, Prod′homme P, Maroun F, Cortes R, Geshev J, Schmidt J E, Allongue P. Perpendicular anisotropy in electrodeposited Au/Co films[J]. Phys. B: Condensed Matter, 2006, 384(1-2): 138-140.
doi: 10.1016/j.physb.2006.05.174 URL

[85] He Z, Gudavarthy R V, Koza J A, Switzer J A. Room-temperature electrochemical reduction of epitaxial magnetite films to epitaxial iron films[J]. J. Am. Chem. Soc., 2011, 133(32): 12358-12361.
doi: 10.1021/ja203975z URL

[86]He Z, Koza J A, Liu Y C, Chen Q Z, Switzer J A. Room-temperature electrochemical reduction of epitaxial Bi2O3 films to epitaxial Bi films[J]. RSC Adv., 2016, 6(99): 96832-96836.
doi: 10.1039/C6RA18098AURL

[87] Chen L C, Dong J W, Schultz B D, Palmstrom C J, Berezovsky J, Isakovic A, Crowell P A, Tabat N. Epitaxial ferromagnetic metal/GaAs(100) heterostructures[J]. J. Vac. Sci. Technol. B, 2000, 18(4): 2057-2062.
doi: 10.1116/1.1306297 URL

[88] Bao Z L, Kavanagh K L. Epitaxial Fe/GaAs via electrochemistry[J]. J. Appl. Phys., 2005, 98(6): 066103.
doi: 10.1063/1.2014939 URL

[89] Norton D P. Synthesis and properties of epitaxial electronic oxide thin-film materials[J]. Mater. Sci. Eng. R Rep., 2004, 43(5-6): 139-247.
doi: 10.1016/j.mser.2003.12.002 URL

[90] Pauporte T, Lincot D. Heteroepitaxial electrodeposition of zinc oxide films on gallium nitride[J]. Appl. Phys. Lett., 1999, 75(24): 3817-3819.
doi: 10.1063/1.125466 URL

[91] Pauporte T, Lincot D. Electrodeposition of semiconductors for optoelectronic devices: results on zinc oxide[J]. Electrochim. Acta, 2000, 45(20): 3345-3353.

doi: 10.1016/S0013-4686(00)00405-9 URL

[92] Richardson T J, Slack J L, Rubin M D. Electrochromism in copper oxide thin films[J]. Electrochim. Acta, 2001, 46 (13-14): 2281-2284.
doi: 10.1016/S0013-4686(01)00397-8 URL

[93] Switzer J A, Kothari H M, Poizot P, Nakanishi S, Bohannan E W. Enantiospecific electrodeposition of a chiral catalyst[J]. Nature, 2003, 425(6957): 490-493.
doi: 10.1038/nature01990 URL

[94] Bohannan E W, Nicic I M, Kothari H A, Switzer J A. Enantiospecific electrodeposition of chiral CuO films on Cu(110) from aqueous Cu(II) tartrate and amino acid complexes[J]. Electrochim. Acta, 2007, 53(1): 155-160.
doi: 10.1016/j.electacta.2007.01.040 URL

[95] Kothari H M, Kulp E A, Boonsalee S, Nikiforov M P, Bohannan E W, Poizot P, Nakanishi S, Switzer J A. Enantiospecific electrodeposition of chiral CuO Films from copper(II) complexes of tartaric and amino acids on single-crystal Au(001)[J]. Chem. Mater., 2004, 16(22): 4232-4244.
doi: 10.1021/cm048939x URL

[96] Gudavarthy R V, Burla N, Kulp E A, Limmer S J, Sinn E, Switzer J A. Epitaxial electrodeposition of chiral CuO films from copper(II) complexes of malic acid on Cu(111) and Cu(110) single crystals[



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.