Abstract
Lithium (Li) metal as an anode material for batteries has extremely high specific capacity and extremely low redox potential, which can significantly improve the energy density of the battery. However, the main problems faced by the use of Li metal anodes are Li dendrite growth, interfacial side reaction and volumetric change of electrode. Herein, a strategy to prepare the three-dimensional (3D) Li foam by combining 3D scaffold with quantitative Li was proposed to suppress Li dendrites growth and alleviate electrode volumetric change. The 3D Li foam facilitated the efficient utilization of Li metal by suppressing the Li dendrite growth, mitigating the volumetric change, and improving the rate performance. Therefore, the cycling lifetime and rate performance of the symmetric cells using the 3D Li foam were improved. The EIS results showed that the 3D Li foam reduced the charge transfer resistance of the symmetric cells. And the average discharge specific capacity of the LTO cell during 1000 cycles was enhanced from 65 mAh·g-1 to 121 mAh·g-1 by using the 3D Li foam.
Graphical Abstract
Keywords
lithium metal anode, lithium dendrite, lithium foam, quantitative lithium composite electrode
Publication Date
2022-08-28
Online Available Date
2022-03-18
Revised Date
2022-03-02
Received Date
2022-02-07
Recommended Citation
Hu-Dong Li, Wei-Shang Jia, Xin-Xiu Yan, Yao-Yue Yang.
Quantitative Lithium Composite as 3D Lithium Foam Anode for Lithium Metal Battery[J]. Journal of Electrochemistry,
2022
,
28(8): 2202051.
DOI: 10.13208/j.electrochem.2202051
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss8/1
References
[1]
Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries. A look into the future[J]. Energy Environ. Sci., 2011, 4(9): 3287-3295.
doi: 10.1039/c1ee01388b
URL
[2]
Chu S, Cui Y, Liu N. The path towards sustainable energy[J]. Nat. Mater., 2017, 16(1): 16-22.
doi: 10.1038/nmat4834
URL
[3]
Xu W, Wang J L, Ding F, Chen X L, Nasybulin E, Zhang Y H, Zhang J G. Lithium metal anodes for rechargeable batteries[J]. Energy Environ. Sci., 2014, 7(2): 513-537.
doi: 10.1039/C3EE40795K
URL
[4]
Lin D C, Liu Y Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nat. Nanotechnol., 2017, 12(3): 194-206.
doi: 10.1038/nnano.2017.16
URL
[5]
Choi J W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nat. Rev. Mater., 2016, 1(4): 16013.
doi: 10.1038/natrevmats.2016.13
URL
[6]
Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010, 22(3): 587-603.
doi: 10.1021/cm901452z
URL
[7]
Wang D, Liu Y M, Li G W, Qin C C, Huang L, Wu Y P. Liquid metal welding to suppress Li dendrite by equalized heat distribution[J]. Adv. Funct. Mater., 2021, 31(47): 2106740.
doi: 10.1002/adfm.202106740
URL
[8]
Wang D, Qin C C, Li X L, Song G Q, Liu Y M, Cao M Y, Huang L, Wu Y P. Synchronous healing of Li metal anode via asymmetrical bidirectional current[J]. iScience, 2020, 23(1): 100781.
doi: 10.1016/j.isci.2019.100781
URL
[9]
Lin D C, Liu Y Y, Pei A, Cui Y. Nanoscale perspective: materials designs and understandings in lithium metal anodes[J]. Nano Res., 2017, 10(12): 4003-4026.
doi: 10.1007/s12274-017-1596-1
URL
[10]
Kong L, Peng H J, Huang J Q, Zhang Q. Review of nano-structured current collectors in lithium-sulfur batteries[J]. Nano Res., 2017, 10(12): 4027-4054.
doi: 10.1007/s12274-017-1652-x
URL
[11]
Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y, Xiao R J. Multi-scale computation methods: Their applications in lithium-ion battery research and development[J]. Chinese Phys. B, 2016, 25(1): 018212.
doi: 10.1088/1674-1056/25/1/018212
URL
[12]
Liu F, Xu R, Wu Y C, Boyle D T, Yang A K, Xu J W, Zhu Y Y, Ye Y S, Yu Z A, Zhang Z W, Xiao X, Huang W X, Wang H S, Chen H, Cui Y. Dynamic spatial progression of isolated lithium during battery operations[J]. Nature, 2021, 600(7890): 659-663.
doi: 10.1038/s41586-021-04168-w
URL
[13]
Zhang Z W, Li Y Z, Xu R, Zhou W J, Li Y B, Oyakhire S T, Wu Y C, Xu J W, Wang H S, Yu Z A, Boyle D T, Huang W, Ye Y S, Chen H, Wan J Y, Bao Z N, Chiu W, Cui Y. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries[J]. Science, 2022, 375(6576): 66-70.
doi: 10.1126/science.abi8703
URL
[14]
Jia W S, Wang Q J, Yang J Y, Fan C, Wang L P, Li J Z. Pretreatment of lithium surface by using iodic acid (HIO3) to improve its anode performance in lithium batteries[J]. ACS Appl. Mater. Inter., 2017, 9(8): 7068-7074.
doi: 10.1021/acsami.6b14614
URL
[15]
Luo Z, Qiu X J, Liu C, Li S, Wang C W, Zou G Q, Hou H S, Ji X B. Interfacial challenges towards stable Li metal anode[J]. Nano Energy, 2021, 79: 105507.
doi: 10.1016/j.nanoen.2020.105507
URL
[16]
Jia W S, Fan C, Wang L P, Wang Q J, Zhao M J, Zhou A J, Li J Z. Extremely accessible potassium nitrate (KNO3) as the highly efficient electrolyte additive in lithium battery[J]. ACS Appl. Mater. Inter., 2016, 8(24): 15399-15405.
doi: 10.1021/acsami.6b03897
URL
[17]
Zheng J M, Engelhard M H, Mei D H, Jiao S H, Polzin B J, Zhang J G, Xu W. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nat. Energy, 2017, 2(3): 17012.
doi: 10.1038/nenergy.2017.12
URL
[18]
Jiao S H, Ren X D, Cao R G, Engelhard M H, Liu Y Z, Hu D H, Mei D H, Zheng J M, Zhao W G, Li Q Y, Liu N, Adams B D, Ma C, Liu J, Zhang J G, Xu W. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nat. Energy, 2018, 3(9): 739-746.
doi: 10.1038/s41560-018-0199-8
URL
[19]
Xiang J W, Yuan L X, Shen Y, Cheng Z X, Yuan K, Guo Z Z, Zhang Y, Chen X, Huang Y H. Improved rechargeability of lithium metal anode via controlling lithium-ion flux[J]. Adv. Energy Mater., 2018, 8(36): 1802352.
doi: 10.1002/aenm.201802352
URL
[20]
Zhang R, Cheng X B, Zhao C Z, Peng H J, Shi J L, Huang J Q, Wang J F, Wei F, Zhang Q. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth[J]. Adv. Mater., 2016, 28(11): 2155-2162.
doi: 10.1002/adma.201504117
URL
[21] Zhang R H, Li Y, Qiao L, Li D W, Deng J L, Zhou J J, Xie L, Hou Y, Wang T, Tian W, Cao J C, Cheng F L, Yang B, Liang K, Chen P, Kong B. Atomic layer deposition assisted superassembly of ultrathin ZnO layer decorated hierarchical Cu foam for stable lithium metal anode[J]. Energy Storage Mater., 2021, 37: 123-134.
[22]
Ye H, Xin S, Yin Y X, Li J Y, Guo Y G, Wan L J. Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons[J]. J. Am. Chem. Soc., 2017, 139(16): 5916-5922.
doi: 10.1021/jacs.7b01763
URL
[23]
Jia W S, Chen T, Wang Y, Qu S J, Yao Z Y, Liu Y C, Yin Y, Zou W, Zhou F, Li J Z. Porous equipotential body with heterogeneous nucleation sites: A novel 3D composite current collector for lithium metal anode[J]. Electrochim. Acta, 2019, 309: 460-468.
doi: 10.1016/j.electacta.2019.04.054
URL
[24]
Shi P, Zhang X Q, Shen X, Zhang R, Liu H, Zhang Q. A review of composite lithium metal anode for practical applications[J]. Adv. Mater. Technol., 2020, 5(1): 1900806.
doi: 10.1002/admt.201900806
URL
[25]
Wang H S, Liu Y Y, Li Y Z, Cui Y. Lithium metal anode materials design: Interphase and host[J]. Electrochem. Energy Rev., 2019, 2(4): 509-517.
doi: 10.1007/s41918-019-00054-2
URL
[26]
Hafez A M, Jiao Y C, Shi J J, Ma Y, Cao D X, Liu Y Y, Zhu H L. Stable metal anode enabled by porous lithium foam with superior ion accessibility[J]. Adv. Mater., 2018, 30(30): 1802156.
doi: 10.1002/adma.201802156
URL
[27]
Huang S B, Chen L, Wang T S, Hu J K, Zhang Q F, Zhang H, Nan C W, Fan L Z. Self-propagating enabling high lithium metal utilization ratio composite anodes for lithium metal batteries[J]. Nano Lett., 2021, 21(1): 791-797.
doi: 10.1021/acs.nanolett.0c04546
URL
[28] Yang T Z, Sun Y W, Qian T, Liu J, Liu X J, Rosei F, Yan C L. Lithium dendrite inhibition via 3D porous lithium metal anode accompanied by inherent SEI layer[J]. Energy Storage Mater., 2020, 26: 385-390.
[29]
Jia W S, Liu Y C, Wang Z H, Qing F Z, Li J Z, Wang Y, Xiao R J, Zhou A J, Li G B, Yu X Q, Hu Y S, Li H, Wang Z X, Huang X J, Chen L Q. Low-temperature fusion fabrication of Li-Cu alloy anode with in situ formed 3D framework of inert LiCux nanowires for excellent Li storage performance[J]. Sci. Bull., 2020, 65(22): 1907-1915.
doi: 10.1016/j.scib.2020.07.012
URL
[30]
Jia W S, Li H D, Wang Z H, Liu Y C, Yang Y Y, Li J Z. 3D composite lithium metal with multilevel micro-nano structure combined with surface modification for stable lithium metal anodes[J]. Appl. Surf. Sci., 2021, 570: 151159.
doi: 10.1016/j.apsusc.2021.151159
URL
[31]
Adair K R, Iqbal M, Wang C H, Zhao Y, Banis M N, Li R Y, Zhang L, Yang R, Lu S G, Sun X L. Towards high performance Li metal batteries: Nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes[J]. Nano Energy, 2018, 54: 375-382.
doi: 10.1016/j.nanoen.2018.10.002
URL
[32]
Chazalviel J N. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Phys. Rev. A, 1990, 42(12): 7355-7367.
doi: 10.1103/PhysRevA.42.7355
URL
[33]
Jin S, Sun Z W, Guo Y L, Qi Z K, Guo C K, Kong X H, Zhu Y W, Ji H X. High areal capacity and lithium utilization in anodes made of covalently connected graphite microtubes[J]. Adv. Mater., 2017, 29(38): 1700783.
doi: 10.1002/adma.201700783
URL
[34]
Zuo T T, Wu X W, Yang C P, Yin Y X, Ye H, Li N W, Guo Y G. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes[J]. Adv. Mater., 2017, 29(29): 1700389.
doi: 10.1002/adma.201700389
URL
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons