Corresponding Author

Wei-Shang Jia(jiaweishang@swun.edu.cn);
Yao-Yue Yang(yaoyueyoung@swun.edu.cn)


Lithium (Li) metal as an anode material for batteries has extremely high specific capacity and extremely low redox potential, which can significantly improve the energy density of the battery. However, the main problems faced by the use of Li metal anodes are Li dendrite growth, interfacial side reaction and volumetric change of electrode. Herein, a strategy to prepare the three-dimensional (3D) Li foam by combining 3D scaffold with quantitative Li was proposed to suppress Li dendrites growth and alleviate electrode volumetric change. The 3D Li foam facilitated the efficient utilization of Li metal by suppressing the Li dendrite growth, mitigating the volumetric change, and improving the rate performance. Therefore, the cycling lifetime and rate performance of the symmetric cells using the 3D Li foam were improved. The EIS results showed that the 3D Li foam reduced the charge transfer resistance of the symmetric cells. And the average discharge specific capacity of the LTO cell during 1000 cycles was enhanced from 65 mAh·g-1 to 121 mAh·g-1 by using the 3D Li foam.

Graphical Abstract


lithium metal anode, lithium dendrite, lithium foam, quantitative lithium composite electrode

Publication Date


Online Available Date


Revised Date


Received Date



[1] Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries. A look into the future[J]. Energy Environ. Sci., 2011, 4(9): 3287-3295.
doi: 10.1039/c1ee01388b URL

[2] Chu S, Cui Y, Liu N. The path towards sustainable energy[J]. Nat. Mater., 2017, 16(1): 16-22.
doi: 10.1038/nmat4834 URL

[3] Xu W, Wang J L, Ding F, Chen X L, Nasybulin E, Zhang Y H, Zhang J G. Lithium metal anodes for rechargeable batteries[J]. Energy Environ. Sci., 2014, 7(2): 513-537.
doi: 10.1039/C3EE40795K URL

[4] Lin D C, Liu Y Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nat. Nanotechnol., 2017, 12(3): 194-206.
doi: 10.1038/nnano.2017.16 URL

[5] Choi J W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nat. Rev. Mater., 2016, 1(4): 16013.
doi: 10.1038/natrevmats.2016.13 URL

[6] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010, 22(3): 587-603.
doi: 10.1021/cm901452z URL

[7] Wang D, Liu Y M, Li G W, Qin C C, Huang L, Wu Y P. Liquid metal welding to suppress Li dendrite by equalized heat distribution[J]. Adv. Funct. Mater., 2021, 31(47): 2106740.
doi: 10.1002/adfm.202106740 URL

[8] Wang D, Qin C C, Li X L, Song G Q, Liu Y M, Cao M Y, Huang L, Wu Y P. Synchronous healing of Li metal anode via asymmetrical bidirectional current[J]. iScience, 2020, 23(1): 100781.
doi: 10.1016/j.isci.2019.100781 URL

[9] Lin D C, Liu Y Y, Pei A, Cui Y. Nanoscale perspective: materials designs and understandings in lithium metal anodes[J]. Nano Res., 2017, 10(12): 4003-4026.
doi: 10.1007/s12274-017-1596-1 URL

[10] Kong L, Peng H J, Huang J Q, Zhang Q. Review of nano-structured current collectors in lithium-sulfur batteries[J]. Nano Res., 2017, 10(12): 4027-4054.
doi: 10.1007/s12274-017-1652-x URL

[11] Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y, Xiao R J. Multi-scale computation methods: Their applications in lithium-ion battery research and development[J]. Chinese Phys. B, 2016, 25(1): 018212.
doi: 10.1088/1674-1056/25/1/018212 URL

[12] Liu F, Xu R, Wu Y C, Boyle D T, Yang A K, Xu J W, Zhu Y Y, Ye Y S, Yu Z A, Zhang Z W, Xiao X, Huang W X, Wang H S, Chen H, Cui Y. Dynamic spatial progression of isolated lithium during battery operations[J]. Nature, 2021, 600(7890): 659-663.
doi: 10.1038/s41586-021-04168-w URL

[13] Zhang Z W, Li Y Z, Xu R, Zhou W J, Li Y B, Oyakhire S T, Wu Y C, Xu J W, Wang H S, Yu Z A, Boyle D T, Huang W, Ye Y S, Chen H, Wan J Y, Bao Z N, Chiu W, Cui Y. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries[J]. Science, 2022, 375(6576): 66-70.
doi: 10.1126/science.abi8703 URL

[14] Jia W S, Wang Q J, Yang J Y, Fan C, Wang L P, Li J Z. Pretreatment of lithium surface by using iodic acid (HIO3) to improve its anode performance in lithium batteries[J]. ACS Appl. Mater. Inter., 2017, 9(8): 7068-7074.
doi: 10.1021/acsami.6b14614 URL

[15] Luo Z, Qiu X J, Liu C, Li S, Wang C W, Zou G Q, Hou H S, Ji X B. Interfacial challenges towards stable Li metal anode[J]. Nano Energy, 2021, 79: 105507.
doi: 10.1016/j.nanoen.2020.105507 URL

[16] Jia W S, Fan C, Wang L P, Wang Q J, Zhao M J, Zhou A J, Li J Z. Extremely accessible potassium nitrate (KNO3) as the highly efficient electrolyte additive in lithium battery[J]. ACS Appl. Mater. Inter., 2016, 8(24): 15399-15405.
doi: 10.1021/acsami.6b03897 URL

[17] Zheng J M, Engelhard M H, Mei D H, Jiao S H, Polzin B J, Zhang J G, Xu W. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nat. Energy, 2017, 2(3): 17012.
doi: 10.1038/nenergy.2017.12 URL

[18] Jiao S H, Ren X D, Cao R G, Engelhard M H, Liu Y Z, Hu D H, Mei D H, Zheng J M, Zhao W G, Li Q Y, Liu N, Adams B D, Ma C, Liu J, Zhang J G, Xu W. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nat. Energy, 2018, 3(9): 739-746.
doi: 10.1038/s41560-018-0199-8 URL

[19] Xiang J W, Yuan L X, Shen Y, Cheng Z X, Yuan K, Guo Z Z, Zhang Y, Chen X, Huang Y H. Improved rechargeability of lithium metal anode via controlling lithium-ion flux[J]. Adv. Energy Mater., 2018, 8(36): 1802352.
doi: 10.1002/aenm.201802352 URL

[20] Zhang R, Cheng X B, Zhao C Z, Peng H J, Shi J L, Huang J Q, Wang J F, Wei F, Zhang Q. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth[J]. Adv. Mater., 2016, 28(11): 2155-2162.
doi: 10.1002/adma.201504117 URL

[21] Zhang R H, Li Y, Qiao L, Li D W, Deng J L, Zhou J J, Xie L, Hou Y, Wang T, Tian W, Cao J C, Cheng F L, Yang B, Liang K, Chen P, Kong B. Atomic layer deposition assisted superassembly of ultrathin ZnO layer decorated hierarchical Cu foam for stable lithium metal anode[J]. Energy Storage Mater., 2021, 37: 123-134.

[22] Ye H, Xin S, Yin Y X, Li J Y, Guo Y G, Wan L J. Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons[J]. J. Am. Chem. Soc., 2017, 139(16): 5916-5922.
doi: 10.1021/jacs.7b01763 URL

[23] Jia W S, Chen T, Wang Y, Qu S J, Yao Z Y, Liu Y C, Yin Y, Zou W, Zhou F, Li J Z. Porous equipotential body with heterogeneous nucleation sites: A novel 3D composite current collector for lithium metal anode[J]. Electrochim. Acta, 2019, 309: 460-468.
doi: 10.1016/j.electacta.2019.04.054 URL

[24] Shi P, Zhang X Q, Shen X, Zhang R, Liu H, Zhang Q. A review of composite lithium metal anode for practical applications[J]. Adv. Mater. Technol., 2020, 5(1): 1900806.
doi: 10.1002/admt.201900806 URL

[25] Wang H S, Liu Y Y, Li Y Z, Cui Y. Lithium metal anode materials design: Interphase and host[J]. Electrochem. Energy Rev., 2019, 2(4): 509-517.
doi: 10.1007/s41918-019-00054-2 URL

[26] Hafez A M, Jiao Y C, Shi J J, Ma Y, Cao D X, Liu Y Y, Zhu H L. Stable metal anode enabled by porous lithium foam with superior ion accessibility[J]. Adv. Mater., 2018, 30(30): 1802156.
doi: 10.1002/adma.201802156 URL

[27] Huang S B, Chen L, Wang T S, Hu J K, Zhang Q F, Zhang H, Nan C W, Fan L Z. Self-propagating enabling high lithium metal utilization ratio composite anodes for lithium metal batteries[J]. Nano Lett., 2021, 21(1): 791-797.
doi: 10.1021/acs.nanolett.0c04546 URL

[28] Yang T Z, Sun Y W, Qian T, Liu J, Liu X J, Rosei F, Yan C L. Lithium dendrite inhibition via 3D porous lithium metal anode accompanied by inherent SEI layer[J]. Energy Storage Mater., 2020, 26: 385-390.

[29] Jia W S, Liu Y C, Wang Z H, Qing F Z, Li J Z, Wang Y, Xiao R J, Zhou A J, Li G B, Yu X Q, Hu Y S, Li H, Wang Z X, Huang X J, Chen L Q. Low-temperature fusion fabrication of Li-Cu alloy anode with in situ formed 3D framework of inert LiCux nanowires for excellent Li storage performance[J]. Sci. Bull., 2020, 65(22): 1907-1915.
doi: 10.1016/j.scib.2020.07.012 URL

[30] Jia W S, Li H D, Wang Z H, Liu Y C, Yang Y Y, Li J Z. 3D composite lithium metal with multilevel micro-nano structure combined with surface modification for stable lithium metal anodes[J]. Appl. Surf. Sci., 2021, 570: 151159.
doi: 10.1016/j.apsusc.2021.151159 URL

[31] Adair K R, Iqbal M, Wang C H, Zhao Y, Banis M N, Li R Y, Zhang L, Yang R, Lu S G, Sun X L. Towards high performance Li metal batteries: Nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes[J]. Nano Energy, 2018, 54: 375-382.
doi: 10.1016/j.nanoen.2018.10.002 URL

[32] Chazalviel J N. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Phys. Rev. A, 1990, 42(12): 7355-7367.
doi: 10.1103/PhysRevA.42.7355 URL

[33] Jin S, Sun Z W, Guo Y L, Qi Z K, Guo C K, Kong X H, Zhu Y W, Ji H X. High areal capacity and lithium utilization in anodes made of covalently connected graphite microtubes[J]. Adv. Mater., 2017, 29(38): 1700783.
doi: 10.1002/adma.201700783 URL

[34] Zuo T T, Wu X W, Yang C P, Yin Y X, Ye H, Li N W, Guo Y G. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes[J]. Adv. Mater., 2017, 29(29): 1700389.
doi: 10.1002/adma.201700389 URL



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.