Abstract
Silicon (Si) has been considered as the potential material for the next-generation lithium-ion batteries (LIBs) for its high capacity (4200 mAh·g-1, Li22Si5) and suitable working voltage (about 0.25 V vs. Li/Li+). However, the cycling stability and electrochemical performance of Si anode become significant challenges because of low intrinsic conductivity and huge volume variation (about 400%) during cycling processes. In addition, the repeated formation and destruction of surface solid electrolyte interphase (SEI) film will continuously consume the electrolyte and cause damage to LIBs. Carbon (C) materials, such as graphite, carbon spheres and tubes, have been widely applied to ameliorate the conductivity and restrict the volume change of Si anode, which guarantees electrical performance. Especially, a Si@C core-shell structure is preferred to perform a high capacity and relatively good cycle stability. The hydrothermal process has been commonly used to prepare Si@C anodes for LIBs, therefore, it is significant to optimize the preparing conditions to achieve ideal electrochemical performance. In this study, glucose was taken as the carbon source, using the Si waste from the photovoltaic industry as raw materials to prepare Si@C core-shell structure by hydrothermal process. The preparing parameters have been evaluated and optimized, including temperature, reaction time, raw material composition, and mass ratio. The optimal preparing process was proceeded in the solution with a glucose concentration of 0.5 mol·L-1 and a Si/glucose mass ratio of 0.3. Then, it was treated in a hydrothermal reactor at 190 oC for 9 h. The obtained Si@C anode candidate (Sample CS190-3) was tested with a coin half-cell. The specific capacity after the first cycle reached 3369.5 mAh·g-1, and the remaining capacity after 500 cycles 1405.0 mAh·g-1 in a current density of 655 mAh·g-1. Moreover, for the rate testing, it retained the discharge capacities of 2328.7 mAh·g-1, 2209.8 mAh·g-1, 2007.1 mAh·g-1, 1769.2 mAh·g-1, 1307.7 mAh·g-1 and 937.1 mAh·g-1 at the charge rates of 655 mA·g-1, 1310 mA·g-1, 2620 mA·g-1, 3930 mA·g-1, 5240 mA·g-1, and 6550 mA·g-1, respectively. And it was recovered to 1683.0 mAh·g-1 when the current density was restored to 655 mA·g-1. In addition, the EIS data revealed that the half-circle radius of the sample obtained by using the optimal conditions (Sample CS190-3) in the low-frequency region was greatly reduced, and the Warburg impedance became the smallest. This work can provide an important approach, and make a significant impact in the preparation of Si/C anode material for LIBs.
Graphical Abstract
Keywords
hydrothermal reaction, Si@C ball structure, glucose, anode materials
Publication Date
2022-08-28
Online Available Date
2022-03-04
Revised Date
2022-02-28
Received Date
2021-12-22
Recommended Citation
Si Chen, Song-Sheng Zheng, Lei-Ming Zheng, Ye-Han Zhang, Zhao-Lin Wang.
Optimized Electrochemical Performance of Si@C Prepared by Hydrothermal Reaction and Glucose Carbon Source[J]. Journal of Electrochemistry,
2022
,
28(8): 2112221.
DOI: 10.13208/j.electrochem.211222
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss8/3
References
[1]
Xu Q, Li J Y, Sun J K, Yin Y X, Wan L J, Guo Y G. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes[J]. Adv. Energy Mater., 2017, 7(3): 1601481.
doi: 10.1002/aenm.201601481
URL
[2]
Scrosati B, Garche J. Lithium batteries: Status, prospects and future[J]. J. Power Sources, 2010, 195(9): 2419-2430.
doi: 10.1016/j.jpowsour.2009.11.048
URL
[3]
Li B, Li S X, Jin Y, Zai J T, Chen M, Nazakat A, Zhan P, Huang Y, Qian X F. Porous Si@C ball-in-ball hollow spheres for lithium-ion capacitors with improved energy and power densities[J]. J. Mater. Chem. A, 2018, 6(42): 21098-21103.
doi: 10.1039/C8TA07576J
URL
[4]
Kennedy B, Patterson D, Camilleri S. Use of lithium-ion batteries in electric vehicles[J]. J. Power Sources, 2000, 90(2): 156-162.
doi: 10.1016/S0378-7753(00)00402-X
URL
[5]
Sourice J, Bordes A, Boulineau A, Alper J P, Franger S, Quinsac A, Habert A, Leconte Y, De Vito E, Porcher W, Reynaud C, Herlin-Boime N, Haon C. Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries[J]. J. Power Sources, 2016, 328: 527-535.
doi: 10.1016/j.jpowsour.2016.08.057
URL
[6]
Liu L H, Lyu J, Li T H, Zhao T K. Well-constructed silicon-based materials as high-performance lithium-ion battery anodes[J]. Nanoscale, 2016, 8(2): 701-722.
doi: 10.1039/C5NR06278K
URL
[7]
Palomino J, Varshney D, Weiner B R, Morell G. Study of the structural changes undergone by hybrid nanostructured Si-CNTs employed as an anode material in a rechargeable lithium-ion battery[J]. J. Phys. Chem. C, 2015, 119(36): 21125-21134.
doi: 10.1021/acs.jpcc.5b01178
URL
[8]
Luo Z P, Xiao Q Z, Lei G T, Li Z H, Tang C J. Si Nano-particles/graphene composite membrane for high performance silicon anode in lithium ion batteries[J]. Carbon, 2016, 98: 373-380.
doi: 10.1016/j.carbon.2015.11.031
URL
[9]
Zhou X S, Yin Y X, Cao A M, Wan L J, Guo Y G. Efficient 3D conducting networks built by graphene sheets and carbon nanoparticles for high-performance silicon anode[J]. ACS Appl. Mater. Interfaces, 2012, 4(5): 2824-2828.
doi: 10.1021/am3005576
URL
[10]
Sun C F, Karki K, Jia Z, Liao H W, Zhang Y, Li T, Qi Y, Cumings J, Rubloff G W, Wang Y H. A beaded-string silicon anode[J]. ACS Nano, 2013, 7(3): 2717-2724.
doi: 10.1021/nn4001512
URL
[11]
Ma Z S, Li T T, Huang Y L, Liu J, Zhou Y C, Xue D F. Critical silicon-anode size for averting lithiation-induced mechanical failure of lithium-ion batteries[J]. RSC Adv., 2013, 3(20): 7398-7402.
doi: 10.1039/c3ra41052h
URL
[12]
Lee S W, Mcdowell M T, Choi J W, Cui Y. Anomalous shape changes of silicon nanopillars by electrochemical lithiation[J]. Nano Lett., 2011, 11(7): 3034-3039.
doi: 10.1021/nl201787r
URL
[13] Lux S F, Lucas I T, Pollak E, Passerini S, Winter M, Kostecki R. The mechanism of Hf formation in LiPF6 based organic carbonate electrolyte[J]. Electrochem. Co-mmun., 2012, 14(1): 47-50.
[14]
Guo S, Li H X, Bai H M, Tao Z L, Chen J. Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries[J]. J. Power Sources, 2014, 248: 1141-1148.
doi: 10.1016/j.jpowsour.2013.09.138
URL
[15]
Choi H S, Lee J G, Lee H Y, Kim S W, Park C R. Effects of surrounding confinements of Si nanoparticles on Si-based anode performance for lithium ion batteries[J]. Electrochim. Acta, 2010, 56(2): 790-796.
doi: 10.1016/j.electacta.2010.09.101
URL
[16]
Kim H, Cho J. Superior lithium electroactive mesoporous Si@carbon coreshell nanowires for lithium battery anode material[J]. Nano Lett., 2008, 8(11): 3688-3691.
doi: 10.1021/nl801853x
URL
[17]
Jeong S, Lee J P, Ko M, Kim G, Park S, Cho J. Etched graphite with internally grown Si nanowires from pores as an anode for high density Li-ion batteries[J]. Nano Lett., 2013, 13(7): 3403-3407.
doi: 10.1021/nl401836c
URL
[18]
Liu R P, Shen C, Dong Y, Qin J L, Wang Q, Iocozzia J, Zhao S Q, Yuan K J, Han C P, Li B H, Lin Z Q. Sandwich-like CNTs/Si/C nanotubes as high performance anode materials for lithium-ion batteries[J]. J. Mater. Chem. A, 2018, 6(30): 14797-14804.
doi: 10.1039/C8TA04686G
URL
[19]
Song T, Jeon Y, Paik U. Si nanotubes array sheathed with sin/sioxny layer as an anode material for lithium ion batteries[J]. J. Electroceram., 2014, 32(1): 66-71.
doi: 10.1007/s10832-013-9871-3
URL
[20]
Fan Z Q, Zheng S S, He S, Ye Y Y, Liang J H, Shi A D, Wang Z L, Zheng Z F. Preparation of micron Si@C anodes for lithium ion battery by recycling the lamellar submicron silicon in the kerf slurry waste from photovoltaic industry[J]. Diam. Relat. Mat., 2020, 107: 107898.
doi: 10.1016/j.diamond.2020.107898
URL
[21]
Mishra K, Zheng J M, Patel R, Estevez L, Jia H P, Luo L L, El-Khoury P Z, Li X L, Zhou X D, Zhang J G. High performance porous Si@C anodes synthesized by low temperature aluminothermic reaction[J]. Electrochim. Acta, 2018, 269: 509-516.
doi: 10.1016/j.electacta.2018.02.166
URL
[22]
Yang J P, Wang Y X, Chou S L, Zhang R Y, Xu Y F, Fan J W, Zhang W X, Liu H K, Zhao D Y, Dou S X. Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries[J]. Nano Energy, 2015, 18: 133-142.
doi: 10.1016/j.nanoen.2015.09.016
URL
[23]
Bae J. Fabrication of carbon microcapsules containing silicon nanoparticles-carbon nanotubes nanocomposite for anode in lithium ion battery[J]. J. Solid State Chem., 2011, 184(7): 1749-1755.
doi: 10.1016/j.jssc.2011.05.012
URL
[24]
Xu Q, Li J Y, Yin Y X, Kong Y M, Guo Y G, Wan L J. Nano/micro structured Si/C anodes with high initial coulombic efficiency in Li ion batteries[J]. Chem.-Asian J., 2016, 11(8): 1205-1209.
doi: 10.1002/asia.201600067
URL
[25]
Liang J, Fan Z, Chen S, Zheng S, Wang Z. A novel three-dimensional cross-linked net structure of submicron Si as high-performance anode for libs[J]. J. Alloy. Compd., 2021, 860: 158433.
doi: 10.1016/j.jallcom.2020.158433
URL
[26]
Kim J Y, Nguyen D T, Kang J S, Song S W. Facile synthesis and stable cycling ability of hollow submicron silicon oxide-carbon composite anode material for Li-ion battery[J]. J. Alloy. Compd., 2015, 633: 92-96.
doi: 10.1016/j.jallcom.2015.01.309
URL
[27] Li B, Xiao Z J, Zai J T, Chen M, Wang H H, Liu X J, Li G, Qian X F. A candidate strategy to achieve high initial coulombic efficiency and long cycle life of Si anode materials: Exterior carbon coating on porous Si microparticles[J]. Mater. Today Energy, 2017, 5: 299-304.
[28]
Dou X Y, Chen M, Zai J T, De Z, Dong B X, Liu X J, Ali N, Tsega T T, Qi R R, Qian X F. Carbon coated porous silicon flakes with high initial coulombic efficiency and long-term cycling stability for lithium ion batteries[J]. Sustain. Energ. Fuels, 2019, 3(9): 2361-2365.
doi: 10.1039/C9SE00281B
URL
[29]
Wu Z Z, Ji S P, Liu T C, Duan Y D, Xiao S, Lin Y, Xu K, Pan F. Aligned Li+ tunnels in core-shell Li(NixMnyCoz)O2@LiFePO4 enhances its high voltage cycling stability as Li-ion battery cathode[J]. Nano Lett., 2016, 16(10): 6357-6363.
doi: 10.1021/acs.nanolett.6b02742
URL
[30]
Feng K, Li M, Zhang Y N, Liu W W, Kashkooli A G, Xiao X C, Chen Z W. Micron-sized secondary Si/C composite with in situ crosslinked polymeric binder for high-energy-density lithium-ion battery anode[J]. Electrochim. Acta, 2019, 309: 157-165.
doi: 10.1016/j.electacta.2019.04.033
[31] Fan Z Q, Wang Y T, Zheng S S, Xu K, Wu J Y, Chen S, Liang J H, Shi A D, Wang Z L. A submicron Si@C core-shell intertwined with carbon nanowires and graphene nanosheet as a high-performance anode material for lithium ion battery[J]. Energy Storage Mater., 2021, 39: 1-10.
[32]
Chen X L, Gerasopoulos K, Guo J C, Brown A, Wang C S, Ghodssi R, Culver J N. A patterned 3D silicon anode fabricated by electrodeposition on a virus-structured current collector[J]. Adv. Funct. Mater., 2010, 21(2): 380-387.
doi: 10.1002/adfm.201001475
URL
[33]
Sourice J, Quinsac A, Leconte Y, Sublemontier O, Porcher W, Haon C, Bordes A, De Vito E, Boulineau A, Larbi S J S, Herlin-Boime N, Reynaud C. One-step synthesis of Si@C nanoparticles by laser pyrolysis: High-capacity anode material for lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2015, 7(12): 6637-6644.
doi: 10.1021/am5089742
URL
[34]
Momoki K, Manabe T, Li L, Yan J W. Silicon nanoparticle generation and deposition on glass from waste silicon powder by nanosecond pulsed laser irradiation[J]. Mater. Sci. Semicond. Process, 2020, 111: 104998.
doi: 10.1016/j.mssp.2020.104998
URL
[35]
Momoki K, Yan J W. Nanoparticle generation from various types of silicon materials by nanosecond-pulsed laser irradiation[J]. Appl. Phys. Express, 2020, 13(2): 026505.
doi: 10.35848/1882-0786/ab6935
URL
[36]
Li X L, Meduri P, Chen X L, Qi W, Engelhard M H, Xu W, Ding F, Xiao J, Wang W, Wang C M, Zhang J G, Liu J. Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes[J]. J. Mater. Chem., 2012, 22(22): 11014-11017.
doi: 10.1039/c2jm31286g
URL
[37]
Cui L F, Yang Y, Hsu C M, Cui Y. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries[J]. Nano Lett., 2009, 9(9): 3370-3374.
doi: 10.1021/nl901670t
URL
[38]
Han H, Huang Z P, Lee W. Metal-assisted chemical etching of silicon and nanotechnology applications[J]. Nano Today, 2014, 9(3): 271-304.
doi: 10.1016/j.nantod.2014.04.013
URL
[39]
Shen D Z, Huang C F, Gan L H, Liu J, Gong Z L, Long M N. Rational design of Si@SiO2/C composites using sustainable cellulose as a carbon resource for anodes in lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2018, 10(9): 7946-7954.
doi: 10.1021/acsami.7b16724
URL
[40]
Wu J, Tu W M, Zhang Y, Guo B L, Li S S, Zhang Y, Wang Y D, Pan M. Poly-dopamine coated graphite oxide/ silicon composite as anode of lithium ion batteries[J]. Powder Technol., 2017, 311: 200-205.
doi: 10.1016/j.powtec.2017.01.063
URL
[41] Yu H J, Li X T, Fang H, Chen Q Y, Jiang F, Shao G. Gold/silicon nanocomposites: synthesis, characterization, and application in detection of dopamine[J]. Mater. Sci., 2011, 22(6): 690-693.
[42]
Liang J H, Chen S, Fan Z Q, Zheng S S, Wang Z L. N-doped C/Si@damo composite material using PVP as the carbon source for lithium-ion batteries anode[J]. Ionics, 2021, 27(10): 4185-4196.
doi: 10.1007/s11581-021-04220-9
URL
[43]
Bhagavannarayana G, Sharma S N, Sharma R K, Lakshmikumar S T. A comparison of the properties of porous silicon formed on polished and textured (100) Si: High resolution XRD and PL studies[J]. Mater. Chem. Phys., 2006, 97(2-3): 442-447.
doi: 10.1016/j.matchemphys.2005.08.041
URL
[44]
Sevilla M, Fuertes A B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. Chem.-Eur. J., 2009, 15(16): 4195-4203.
doi: 10.1002/chem.200802097
pmid: 19248078
[45] Huang Y, Pemberton J E. Synthesis of uniform, spherical sub-100nm silica particles using a conceptual modification of the classic lamer model[J]. Colloid Surf. A-Physi-cochem. Eng. Asp., 2010, 360(1-3): 175-183.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons