Abstract
Nickel-rich layered oxide is one of the dominate cathode materials in the lithium ion batteries, due to its high specific energy density meeting the range requirement of the electric vehicles. Typically, the commercial Ni-rich layered oxides are synthesized from co-precipitated precursors, while precision control is required in the co-precipitation process to ensure the atomic level mixing of the cations such as Ni, Co and Mn, et.al. In this work, a one-step solid-state method was successfully applied to synthesize the Ni-rich layered oxide materials with ultra-high Ni content. By choosing the nickel hydroxides as the precursor with layered structure similar to the targeting product, we successfully synthesized LiNiO2 (LNO) and LiNixCoyO2(x = 0.85, 0.9, 0.95; x + y = 1) with the electrochemical performance comparable to NCM prepared from precipitated precursors. It was confirmed by XRD and XPS that Co is doped into LNO and suppresses the Li+/Ni2+ mixing in Ni-rich oxides. The Co dopant exhibits a noticeable advantage in improving the discharge capacity, rate performance and cycle performance. This work provides some perspective that the one-step solid-state method is a promising approach to prepare high-energy ultrahigh-Ni layered oxide cathodes.
Graphical Abstract
Keywords
lithium-ion batteries, Ni-rich layered oxides, one-step solid-state method, LiNiO2
Publication Date
2022-08-28
Online Available Date
2022-03-04
Revised Date
2022-01-11
Received Date
2021-12-13
Recommended Citation
Jing-Yue Wang, Rui Wang, Shi-Qi Wang, Li-Fan Wang, Chun Zhan.
Facile One-Step Solid-State Synthesis of Ni-Rich Layered Oxide Cathodes for Lithium-Ion Batteries[J]. Journal of Electrochemistry,
2022
,
28(8): 2112131.
DOI: 10.13208/j.electrochem.211213
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss8/4
References
[1]
Liu Y Y, Zhu Y Y, Cui Y. Challenges and opportunities towards fast-charging battery materials[J]. Nat. Energy, 2019, 4(7): 540-550.
doi: 10.1038/s41560-019-0405-3
URL
[2] Cano Z P, Banham D, Ye S Y, Hintennach A, Lu J, Fowler M, Chen Z W. Batteries and fuel cells for emerging electric vehicle markets[J]. Nat. Energy, 2018, 3(4): 279-289.
[3]
Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010, 22(3): 587-603.
doi: 10.1021/cm901452z
URL
[4]
Liu A R, Zhang N, Stark J E, Arab P, Li H Y, Dahn J R. Synthesis of Co-free Ni-rich single crystal positive electrode materials for lithium ion batteries: Part I. two-step lithiation method for Al- or Mg-doped LiNiO2[J]. J. Electrochem. Soc., 2021, 168(4): 040531.
doi: 10.1149/1945-7111/abf7e8
URL
[5]
Bianchini M, Roca-Ayats M, Hartmann P, Brezesinski T, Janek J. There and back again- the journey of LiNiO2 as a cathode active material[J]. Angew. Chem.-Int. Edit., 2019, 58(31): 10434-10458.
doi: 10.1002/anie.201812472
URL
[6]
Myung S T, Maglia F, Park K J, Yoon C S, Lamp P, Kim S J, Sun Y K. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives[J]. ACS Energy Lett., 2017, 2(1): 196-223.
doi: 10.1021/acsenergylett.6b00594
URL
[7]
Sun H H, Ryu H H, Kim U H, Weeks J A, Heller A, Sun Y K, Mullins C B. Beyond doping and coating: prospective strategies for stable high-capacity layered Ni-rich cathodes[J]. ACS Energy Lett., 2020, 5(4): 1136-1146.
doi: 10.1021/acsenergylett.0c00191
URL
[8]
Zhang H L, Omenya F, Yan P F, Luo L L, Whittingham M S, Wang C M, Zhou G W. Rock-salt growth-induced (003) cracking in a layered positive electrode for Li-ion batteries[J]. ACS Energy Lett., 2017, 2(11): 2607-2615.
doi: 10.1021/acsenergylett.7b00907
URL
[9] Li H Y, Cormier M, Zhang N, Inglis J, Li J, Dahn J R. Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries?[J]. J. Electrochem. Soc., 2019, 166(4): A429-A439.
[10] Cormier M M E, Zhang N, Liu A, Li H Y, Inglis J, Dahn J R. Impact of dopants (Al, Mg, Mn, Co) on the reactivity of LixNiO2 with the electrolyte of Li-ion batteries[J]. J. Electrochem. Soc., 2019, 166(13): A2826-A2833.
[11]
Dahn J R, Fuller E W, Obrovac M, Vonsacken U. Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells[J]. Solid State Ion., 1994, 69(3-4): 265-270.
doi: 10.1016/0167-2738(94)90415-4
URL
[12]
Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallogr. Sect. A, 1976, 32(5): 751-767.
doi: 10.1107/S0567739476001551
URL
[13]
Radin M D, Hy S, Sina M, Fang C C, Liu H D, Vinckeviciute J, Zhang M H, Whittingham M S, Meng Y S, Van der Ven A. Narrowing the gap between theoretical and practical capacities in Li-ion layered oxide cathode materials[J]. Adv. Energy Mater, 2017, 7(20): 1602888.
doi: 10.1002/aenm.201602888
URL
[14]
Kim J, Lee H, Cha H, Yoon M, Park M, Cho J. Prospect and reality of Ni-rich cathode for commercialization[J]. Adv. Energy Mater, 2018, 8(6): 1702028.
doi: 10.1002/aenm.201702028
URL
[15]
Delmas C, Pérès J P, Rougier A, Demourgues A, Weill F, Chadwick A, Broussely M, Perton F, Biensan P, Willmann P. On the behavior of the LixNiO2 system: an electrochemical and structural overview[J]. J. Power Sources, 1997, 68(1): 120-125.
doi: 10.1016/S0378-7753(97)02664-5
URL
[16]
Rougier A, Gravereau P, Delmas C. Optimization of the composition of the Li1-zNi1+zO2 electrode materials: structural, magnetic, and electrochemical studies[J]. J. Electro-chem. Soc., 1996, 143(4): 1168-1175.
doi: 10.1149/1.1836614
URL
[17] Liu A, Zhang N, Li H Y, Inglis J, Wang Y Q, Yin S, Wu H H, Dahn J R. Investigating the effects of magnesium doping in various Ni-rich positive electrode materials for lithium ion batteries[J]. J. Electrochem. Soc., 2019, 166(16): A4025-A4033.
[18]
Yoon C S, Choi M J, Jun D W, Zhang Q, Kaghazchi P, Kim K H, Sun Y K. Cation ordering of Zr-doped LiNiO2 cathode for lithium-ion batteries[J]. Chem. Mater., 2018, 30(5): 1808-1814.
doi: 10.1021/acs.chemmater.8b00619
URL
[19]
Mu L Q, Zhang R, Kan W H, Zhang Y, Li L X, Kuai C G, Zydlewski B, Rahman M M, Sun C J, Sainio S, Avdeev M, Nordlund D, Xin H L L, Lin F. Dopant distribution in Co-free high-energy layered cathode materials[J]. Chem. Mater., 2019, 31(23): 9769-9776.
doi: 10.1021/acs.chemmater.9b03603
URL
[20] Delmas C, Braconnier J J, Fouassier C, Hagenmuller P. Electrochemical intercalation of sodium in NaxCoO2 bronzes[J]. Solid State Ion., 1981, 3-4(8): 165-169.
[21]
Guilmard M, Rougier A, Grüne A, Croguennec L, Delmas C. Effects of aluminum on the structural and electrochemical properties of LiNiO2[J]. J. Power Sources, 2003, 115(2): 305-314.
doi: 10.1016/S0378-7753(03)00012-0
URL
[22] Albrecht S, Kümpers J, Kruft M, Malcus S, Vogler C, Wahl M, Wohlfahrt-Mehrens M. Electrochemical and thermal behavior of aluminum- and magnesium-doped spherical lithium nickel cobalt mixed oxides Li1-x(Ni1-y-z-CoyMz)O2 (M = Al, Mg)[J]. J. Power Sources, 2003, 119: 178-183.
[23]
Kim J, Cha H Y, Lee H Y, Oh P, Cho J H. Surface and interfacial chemistry in the nickel-rich cathode materials[J]. Batteries Supercaps, 2020, 3(4): 309-322.
doi: 10.1002/batt.201900131
URL
[24]
Aricò A S, Bruce P, Scrosati B, Tarascon J M, van Scha-lkwijk W. Nanostructured materials for advanced energy conversion and storage devices[J]. Nat. Mater., 2005, 4(5): 366-377.
doi: 10.1038/nmat1368
URL
[25]
Zheng L T, Bennett J C, Obrovac M N. All-dry synthesis of single crystal NMC cathode materials for Li-ion batteries[J]. J. Electrochem. Soc., 2020, 167(13): 130536.
doi: 10.1149/1945-7111/abbcb1
URL
[26]
Ohzuku T, Ueda A, Nagayama M. Electrochemistry and structural chemistry of LiNiO2 (Rm) for 4 volt secondary lithium cells[J]. J. Electrochem. Soc., 1993, 140(7): 1862-1870.
doi: 10.1149/1.2220730
URL
[27]
Zhou F, Zhao X M, van Bommel A, Rowe A W, Dahn J R. Coprecipitation synthesis of NixMn1-x(OH)2 mixed hydroxides[J]. Chem. Mater., 2010, 22(3): 1015-1021.
doi: 10.1021/cm9018309
URL
[28]
Kim Y, Kim D. Synthesis of high-density nickel cobalt aluminum hydroxide by continuous coprecipitation me-thod[J]. ACS Appl. Mater. Interfaces, 2012, 4(2): 586-589.
doi: 10.1021/am201585z
URL
[29]
Luo W B, Dahn J R. Preparation of Co1-zAlz(OH)2(NO3)z layered double hydroxides and Li(Co1-zAlz)O2[J]. Chem. Mater., 2009, 21(1): 56-62.
doi: 10.1021/cm801627t
URL
[30]
Zhao M Q, Zhang Q, Huang J Q, Wei F. Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-properties, synthesis, and applications[J]. Adv. Funct. Mater., 2012, 22(4): 675-694.
doi: 10.1002/adfm.201102222
URL
[31]
Kanno R, Kubo H, Kawamoto Y, Kamiyama T, Izumi F, Takeda Y, Takano M. Phase relationship and lithium deintercalation in lithium nickel oxides[J]. J. Solid State Chem., 1994, 110(2): 216-225.
doi: 10.1006/jssc.1994.1162
URL
[32]
Weigel T, Schipper F, Erickson E M, Susai F A, Markov-sky B, Aurbach D. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations[J]. ACS Energy Lett., 2019, 4(2): 508-516.
doi: 10.1021/acsenergylett.8b02302
[33]
Li W D, Erickson E M, Manthiram A. High-nickel layered oxide cathodes for lithium-based automotive batteries[J]. Nat. Energy., 2020, 5(1): 26-34.
doi: 10.1038/s41560-019-0513-0
URL
[34]
Lee E J, Chen Z H, Noh H J, Nam S C, Kang S, Kim D H, Amine K, Sun Y K. Development of microstrain in aged lithium transition metal oxides[J]. Nano Lett., 2014, 14(8): 4873-4880.
doi: 10.1021/nl5022859
URL
[35] Li J, Harlow J, Stakheiko N, Zhang N, Paulsen J, Dahn J. Dependence of cell failure on cut-off voltage ranges and observation of kinetic hindrance in LiNi0.8Co0.15Al0.05O2[J]. J. Electrochem. Soc., 2018, 165(11): A2682-A2695.
[36] Gilbert J A, Bareño J, Spila T, Trask S E, Miller D J, Polzin B J, Jansen A N, Abraham D P. Cycling behavior of NCM523/graphite lithium-ion cells in the 3-4.4 V range: diagnostic studies of full cells and harvested electrodes[J]. J. Electrochem. Soc., 2017, 164(1): A6054-A6065.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons