•  
  •  
 

Corresponding Author

Ke-Xin Zhang(zhky@jlu.edu.cn);
Xiao-Xin Zou(xxzou@jlu.edu.cn)

Abstract

The development of energy conversion/storage technologies can achieve the reliable and stable renewable energy supply, and bring us a sustainable future. As the core half-reaction of many energy-related systems, water oxidation is the bottleneck due to its sluggish kinetics of the four-concerted proton-electron transfer (CPET) process. This necessitates the exploitation of low cost, highly active and stable water oxidation electrocatalysts. Perovskite-type oxides possess diverse crystal structures, flexible compositions and unique electronic properties, enabling them ideal material platform for the optimization of catalytic performance. In this review, we provide a comprehensive summary for the crystal structures, electronic structures and synthetic methods of perovskite-type oxides in their application background of water oxidation electrocatalysis. Then, we summarize the recent research advances of perovskite-type water oxidation electrocatalysts in alkaline and acidic media, and highlight the significance of their structure-activity relationship and activation/deactivation mechanism. Finally, challenges and the corresponding solutions for the perovskite-type electrocatalysts are highlighted, which is expected to open the opportunities to their practical applications.

Graphical Abstract

Keywords

perovskite, water oxidation, electrocatalysis, water splitting, hydrogen energy

Publication Date

2022-09-28

Online Available Date

2022-08-23

Revised Date

2022-07-24

Received Date

2022-06-16

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.