Corresponding Author

Ke-Xin Zhang(zhky@jlu.edu.cn);
Xiao-Xin Zou(xxzou@jlu.edu.cn)


The development of energy conversion/storage technologies can achieve the reliable and stable renewable energy supply, and bring us a sustainable future. As the core half-reaction of many energy-related systems, water oxidation is the bottleneck due to its sluggish kinetics of the four-concerted proton-electron transfer (CPET) process. This necessitates the exploitation of low cost, highly active and stable water oxidation electrocatalysts. Perovskite-type oxides possess diverse crystal structures, flexible compositions and unique electronic properties, enabling them ideal material platform for the optimization of catalytic performance. In this review, we provide a comprehensive summary for the crystal structures, electronic structures and synthetic methods of perovskite-type oxides in their application background of water oxidation electrocatalysis. Then, we summarize the recent research advances of perovskite-type water oxidation electrocatalysts in alkaline and acidic media, and highlight the significance of their structure-activity relationship and activation/deactivation mechanism. Finally, challenges and the corresponding solutions for the perovskite-type electrocatalysts are highlighted, which is expected to open the opportunities to their practical applications.

Graphical Abstract


perovskite, water oxidation, electrocatalysis, water splitting, hydrogen energy

Publication Date


Online Available Date


Revised Date


Received Date



[1] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
doi: 10.1038/nature11475 URL

[2] Trenberth K E, Cheng L J, Jacobs P, Zhang Y X, Fasullo J. Hurricane harvey links to ocean heat content and climate change adaptation[J]. Earth’s Future, 2018, 6(5): 730-744.
doi: 10.1029/2018EF000825 URL

[3] Tang C, Zheng Y, Jaroniec M, Qiao S Z. Electrocatalytic refinery for sustainable production of fuels and chemicals[J]. Angew. Chem. Int. Ed., 2021, 60(36): 19572-19590.
doi: 10.1002/anie.202101522 pmid: 33606339

[4] Chu S, Cui Y, Liu N. The path towards sustainable energy[J]. Nat. Mater., 2017, 16(1): 16-22.
doi: 10.1038/nmat4834 URL

[5] Yan Z F, Hitt J L, Turner J A, Mallouk T E. Renewable electricity storage using electrolysis[J]. Proc. Natl. Acad. Sci. U.S.A., 2020, 117(23): 12558-12563.
doi: 10.1073/pnas.1821686116 URL

[6] De Luna P, Hahn C, Higgins D, Jaffer S A, Jaramillo T F, Sargent E H. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J]. Science, 2019, 364(6438): eaav3506.
doi: 10.1126/science.aav3506 URL

[7] Beaudin M, Zareipour H, Schellenberglabe A, Rosehart W. Energy storage for mitigating the variability of renewable electricity sources: An updated review[J]. Energy Sustain. Dev., 2010, 14(4): 302-314.
doi: 10.1016/j.esd.2010.09.007 URL

[8] Hunter B M, Gray H B, Müller A M. Earth-abundant heterogeneous water oxidation catalysts[J]. Chem. Rev., 2016, 116(22): 14120-14136.
pmid: 27797490

[9] Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chem. Soc. Rev., 2017, 46(2): 337-365.
doi: 10.1039/C6CS00328A URL

[10] Hwang J, Rao R R, Giordano L, Katayama Y, Yu Y, Shao-Horn Y. Perovskites in catalysis and electrocatalysis[J]. Science, 2017, 358(6364): 751-756.
doi: 10.1126/science.aam7092 pmid: 29123062

[11] Rose G. Ueber einige neue Mineralien des Urals[J]. J. Prakt. Chem., 2010, 19(1): 459-468.
doi: 10.1002/prac.18400190179 URL

[12] Chakhmouradian A R, Woodward P M. Celebrating 175 years of perovskite research: A tribute to Roger H. Mitchell[J]. Phys Chem Miner, 2014, 41(6): 387-391.
doi: 10.1007/s00269-014-0678-9 URL

[13] Ortega-San-Martin L. Introduction to perovskites: A historical perspective[M]. New York: Springer, 2020. 1-41.

[14] Von Hippel A, Breckenridge R G, Chesley F G, Tisza L. High dielectric constant ceramics[J]. Ind. Eng. Chem., 1946, 6(4): 238-251.

[15] Bednorz J G, Müller K A Z. Possible high Tc supercond-uctivity in the Ba-La-Cu-O system[J]. Z. Phys. B-Condensed Matter., 1986, 64(2): 189-193.
doi: 10.1007/BF01303701 URL

[16] Jonker G H, Santen J. Ferromagnetic compounds of manganese with perovskite structure[J]. Physica, 1950, 16(3): 337-349.
doi: 10.1016/0031-8914(50)90033-4 URL

[17] Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051.
doi: 10.1021/ja809598r pmid: 19366264

[18] Meadowcroft D B. Low-cost oxygen electrode material[J]. Nature, 1970, 226(5248): 847-848.
doi: 10.1038/226847a0 URL

[19] Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J]. Science, 2011, 334(6061): 1383-1385.
doi: 10.1126/science.1212858 pmid: 22033519

[20] Seitz L C, Dickens C F, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang H Y, Norskov J K, Jaramillo T F. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction[J]. Science, 2016, 353(6303): 1011-1014.
doi: 10.1126/science.aaf5050 URL

[21] Xu X M, Zhong Y J, Shao Z P. Double perovskites in ca-talysis, electrocatalysis, and photo(electro)catalysis[J]. Trends Chem., 2019, 1(4): 410-424.
doi: 10.1016/j.trechm.2019.05.006 URL

[22] Zhang Q, Liang X, Chen H, Yan W S, Shi L, Liu Y P, Li J Y, Zou X X. Identifying key structural subunits and their synergism in low-iridium triple perovskites for oxygen evolution in acidic media[J]. Chem. Mater., 2020, 32(9): 3904-3910.
doi: 10.1021/acs.chemmater.0c00081 URL

[23] Xu X M, Pan Y L, Zhong Y J, Ran R, Shao Z P. Ruddlesden-popper perovskites in electrocatalysis[J]. Mater. Ho-rizons, 2020, 7(10): 2519-2565.

[24] Peña M A, Fierro J L G. Chemical structures and performance of perovskite oxides[J]. Chem. Rev., 2001, 101(7): 1981-2017.
pmid: 11710238

[25] George G. Fundamentals of perovskite oxides: Synthesis, structure, properties and applications[M]. Boca Raton: CRC Press, 2020.

[26] Tilley R. Perovskites structure-property relationships[M]. Chichester: John Wiley & Sons, 2016: 1-315.

[27] Rodríguez-Carvajal J, Hennion M, Moussa F, Mouden A H, Pinsard L, Revcolevschi A. Neutron-diffraction study of the Jahn-Teller transition in stoichiometric LaMnO3[J]. Phys. Rev. B, 1998, 57(6): R3189-R3192.
doi: 10.1103/PhysRevB.57.R3189 URL

[28] David W I F, Harrison W T A, Gunn J M F, Moze O, Soper A K, Day P, Jorgensen J D, Hinks D G, Beno M A, Soderholm L, Capone Ii D W, Schuller I K, Segre C U, Zhang K, Grace J D. Structure and crystal chemistry of the high-Tc superconductor YBa2Cu3O7-x[J]. Nature, 1987, 327(6120): 310-312.
doi: 10.1038/327310a0 URL

[29] Yagi S, Yamada I, Tsukasaki H, Seno A, Murakami M, Fujii H, Chen H, Umezawa N, Abe H, Nishiyama N, Mori S. Covalency-reinforced oxygen evolution reaction catalyst[J]. Nat. Commun., 2015, 6: 8249.
doi: 10.1038/ncomms9249 pmid: 26354832

[30] Koo B, Kim K, Kim J K, Kwon H, Han J W, Jung W. Sr segregation in perovskite oxides: Why it happens and how it exists[J]. Joule, 2018, 2(8): 1476-1499.
doi: 10.1016/j.joule.2018.07.016 URL

[31] Goldschmidt V M. Die Gesetze der Krystallochemie[J]. Naturwissenschaften, 1926, 14(21): 477-485.
doi: 10.1007/BF01507527 URL

[32] King G, Woodward P M. Cation ordering in perovskites[J]. J. Mater. Chem., 2010, 20(28): 5785-5796.
doi: 10.1039/b926757c URL

[33] Ruddlesden S N, Popper P. The compound Sr3Ti2O7 and its structure[J]. Acta Cryst., 1958, 11(1): 54-55.
doi: 10.1107/S0365110X58000128 URL

[34] Dylla M T, Kang S D, Snyder G J. Effect of two-dimensional crystal orbitals on fermi surfaces and electron transport in three-dimensional perovskite oxides[J]. Angew. Chem. Int. Ed., 2019, 58(17): 5503-5512.
doi: 10.1002/anie.201812230 pmid: 30589168

[35] Pesquera D, Herranz G, Barla A, Pellegrin E, Bondino F, Magnano E, Sánchez F, Fontcuberta J. Surface symmetry-breaking and strain effects on orbital occupancy in transition metal perovskite epitaxial films[J]. Nat. Commun., 2012, 3: 1189.
doi: 10.1038/ncomms2189 pmid: 23149734

[36] Suntivich J, Gasteiger H A, Yabuuchi N, Nakanishi H, Goodenough J B, Shao-Horn Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nat. Chem., 2011, 3(7): 546-550.
doi: 10.1038/nchem.1069 pmid: 21697876

[37] Lee Y L, Kleis J, Rossmeisl J, Shao-Horn Y, Morgan D. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors[J]. Energy Environ. Sci., 2011, 4(10): 3966-3970.
doi: 10.1039/c1ee02032c URL

[38] Grimaud A, May K J, Carlton C E, Lee Y L, Risch M, Hong W T, Zhou J G, Shao-Horn Y. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution[J]. Nat. Commun., 2013, 4: 2439.
doi: 10.1038/ncomms3439 pmid: 24042731

[39] Hong W T, Stoerzinger K A, Lee Y L, Giordano L, Grimaud A, Johnson A M, Hwang J, Crumlin E J, Yang W L, Shao-Horn Y. Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides[J]. Energy Environ. Sci., 2017, 10(10): 2190-2200.
doi: 10.1039/C7EE02052J URL

[40] Hong W T, Stoerzinger K A, Moritz B, Devereaux T P, Yang W L, Shao-Horn Y. Probing LaMO3 metal and oxygen partial density of states using X-ray emission, absorption, and photoelectron spectroscopy[J]. J. Phys. Chem. C, 2015, 119(4): 2063-2072.
doi: 10.1021/jp511931y URL

[41] Calle-Vallejo F, Inoglu N G, Su H Y, Martinez J I, Man I C, Koper M T M, Kitchin J R, Rossmeisl J. Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides[J]. Chem. Sci., 2013, 4(3): 1245-1249.
doi: 10.1039/c2sc21601a URL

[42] Gerischer H. Electron-transfer kinetics of redox reactions at the semiconductor/electrolyte contact. A new approach[J]. J. Phys. Chem., 1991, 95(3): 1356-1359.
doi: 10.1021/j100156a060 URL

[43] Zaanen J, Sawatzky G A, Allen J W. Band gaps and electronic structure of transition-metal compounds[J]. Phys. Rev. Lett., 1985, 55(4): 418-421.
pmid: 10032345

[44] Portier J, Poizot P, Tarascon J M, Campet G, Subramanian M. Acid-base behavior of oxides and their electronic structure[J]. Solid State Sci., 2003, 5(5): 695-699.
doi: 10.1016/S1293-2558(03)00031-1 URL

[45] Bockris J O, Otagawa T. The electrocatalysis of oxygen evolution on perovskites[J]. J. Electrochem. Soc., 1984, 131(2): 290-302.
doi: 10.1149/1.2115565 URL

[46] Kumar V, Kumar R, Shukla D K, Gautam S, Chae K H, Kumar R. Electronic structure and electrical transport properties of LaCo1-xNixO3 (0≤ x ≤0.5)[J]. J. Appl. Phys., 2013, 114(7): 073704.
doi: 10.1063/1.4818448 URL

[47] Diaz-Morales O, Raaijman S, Kortlever R, Kooyman P J, Wezendonk T, Gascon J, Fu W T, Koper M T M. Iridium-based double perovskites for efficient water oxidation in acid media[J]. Nat. Commun., 2016, 7: 12363.
doi: 10.1038/ncomms12363 pmid: 27498694

[48] Liu H, Ding X F, Wang L X, Ding D, Zhang S H, Yuan G L. Cation deficiency design: A simple and efficient strategy for promoting oxygen evolution reaction activity of perovskite electrocatalyst[J]. Electrochim. Acta, 2018, 259:1004-1010.
doi: 10.1016/j.electacta.2017.10.172 URL

[49] Xu X M, Su C, Zhou W, Zhu Y L, Chen Y B, Shao Z P. Co-doping strategy for developing perovskite oxides as highly efficient electrocatalysts for oxygen evolution reaction[J]. Adv. Sci., 2016, 3(2): 1500187.
doi: 10.1002/advs.201500187 URL

[50] Miao Y F, Wang X T, Zhang H J, Zhang T Y, Wei N, Liu X M, Chen Y T, Chen J, Zhao Y X. In situ growth of ultra-thin perovskitoid layer to stabilize and passivate MAPbI3 for efficient and stable photovoltaics[J]. eScience, 2021, 1(1): 91-97.
doi: 10.1016/j.esci.2021.09.005 URL

[51] Zeng J, Bi L Y, Cheng Y H, Xu B M, Jen A K Y. Self-ass-embled monolayer enabling improved buried interfaces in blade-coated perovskite solar cells for high efficiency and stability[J]. Nano Res. Energy, 2022, 1: e9120004.
doi: 10.26599/NRE.2022.9120004 URL

[52] Wang H, Wang L, Luo Q S, Zhang J, Wang C T, Ge X, Zhang W, Xiao F S. Two-dimensional manganese oxide on ceria for the catalytic partial oxidation of hydrocarbons[J]. Chem. Synth., 2022, 2(1): 2.
doi: 10.20517/cs.2022.02 URL

[53] Li Q, Wu J B, Wu T, Jin H R, Zhang N, Li J, Liang W X, Liu M L, Huang L, Zhou J. Phase engineering of atomically thin perovskite oxide for highly active oxygen evolution[J]. Adv. Funct. Mater., 2021, 31(38): 2102002.
doi: 10.1002/adfm.202102002 URL

[54] Jin C, Cao X C, Zhang L Y, Zhang C, Yang R Z. Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction[J]. J. Power Sources, 2013, 241: 225-230.
doi: 10.1016/j.jpowsour.2013.04.116 URL

[55] Yu L J, Xu N, Zhu T L, Xu Z L, Sun M Z, Geng D. La0.4Sr0.6Co0.7Fe0.2Nb0.1O3-δ perovskite prepared by the sol-gel method with superior performance as a bifunctional oxygen electrocatalyst[J]. Int. J. Hydrogen Energy, 2020, 45(55): 30583-30591.
doi: 10.1016/j.ijhydene.2020.08.105 URL

[56] Wang Z, Li M, Liang C H, Fan L Q, Han J N, Xiong Y P. Effect of morphology on the oxygen evolution reaction for La0.8Sr0.2Co0.2Fe0.8O3-δ electrochemical catalyst in alkaline media[J]. RSC Adv., 2016, 6(73): 69251-69256.
doi: 10.1039/C6RA14770D URL

[57] Flaschen S S. An aqueous synthesis of barium titanate[J]. J. Am. Chem. Soc., 1955, 77(23): 6194-6194.

[58] Wei X, Xu G, Ren Z H, Wang Y G, Shen G, Han G R. Composition and shape control of single-crystalline Ba1-xSrxTiO3 (x=0-1) nanocrystals via a solvothermal route[J]. J. Cryst. Growth, 2008, 310(18): 4132-4137.
doi: 10.1016/j.jcrysgro.2008.04.039 URL

[59] Kumada N, Kyoda T, Yonesaki Y, Takei T, Kinomura N. Preparation of KNbO3 by hydrothermal reaction[J]. Mater. Res. Bull., 2007, 42(10): 1856-1862.
doi: 10.1016/j.materresbull.2006.11.045 URL

[60] Stoerzinger K A, Choi W S, Jeen H, Lee H N, Shao-Horn Y. Role of strain and conductivity in oxygen electrocatalysis on LaCoO3 thin films[J]. J. Phys. Chem. Lett., 2015, 6(3): 487-492.
doi: 10.1021/jz502692a pmid: 26261968

[61] Weber M L, Baeumer C, Mueller D N, Jin L, Jia C L, Bick D S, Waser R, Dittmann R, Valov I, Gunkel F. Ele-ctrolysis of water at atomically tailored epitaxial cobaltite surfaces[J]. Chem. Mater., 2019, 31(7): 2337-2346.
doi: 10.1021/acs.chemmater.8b04577 URL

[62] Tang R B, Nie Y F, Kawasaki J K, Kuo D Y, Petretto G, Hautier G, Rignanese G M, Shen K M, Schlom D G, Suntivich J. Oxygen evolution reaction electrocatalysis on SrIrO3 grown using molecular beam epitaxy[J]. J. Mater. Chem. A, 2016, 4(18): 6831-6836.
doi: 10.1039/C5TA09530A URL

[63] Wang L, Adiga P, Zhao J L, Samarakoon W S, Stoerzinger K A, Spurgeon S R, Matthews B E, Bowden M E, Sushko P V, Kaspar T C, Sterbinsky G E, Heald S M, Wang H, Wangoh L W, Wu J P, Guo E J, Qian H J, Wang J O, Varga T, Thevuthasan S, Feng Z X, Yang W L, Du Y G, Chambers S A. Understanding the electronic structure evolution of epitaxial LaNi1-xFexO3 thin films for water oxidation[J]. Nano Lett., 2021, 21(19): 8324-8331.
doi: 10.1021/acs.nanolett.1c02901 URL

[64] Ni L S, Guo R T, Fang S S, Chen J, Gao J Q, Mei Y, Zhang S, Deng W T, Zou G Q, Hou H S, Ji X B. Crack-free single-crystalline Co-free Ni-rich LiNi0.95Mn0.05O2 layered cathode[J]. eScience, 2022, 2(1): 116-124.
doi: 10.1016/j.esci.2022.02.006 URL

[65] Li B, Li Z, Wu X, Zhu Z L. Interface functionalization in inverted perovskite solar cells: From material perspective[J]. Nano Res. Energy, 2022, 1(1): e9120011.
doi: 10.26599/NRE.2022.9120011 URL

[66] Man I C, Su H Y, Calle-Vallejo F, Hansen H A, Martínez J I, Inoglu N G, Kitchin J, Jaramillo T F, Nörskov J K, Rossmeisl J. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165.
doi: 10.1002/cctc.201000397 URL

[67] Matsumoto Y, Sato E. Electrocatalytic properties of transition metal oxides for oxygen evolution reaction[J]. Mater. Chem. Phys., 1986, 14(5): 397-426.
doi: 10.1016/0254-0584(86)90045-3 URL

[68] Kim J, Yin X, Tsao K C, Fang S H, Yang H. Ca2MN2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction[J]. J. Am. Chem. Soc., 2014, 136(42): 14646-14649.
doi: 10.1021/ja506254g URL

[69] Duan Y, Sun S N, Xi S B, Ren X, Zhou Y, Zhang G L, Yang H T, Du Y H, Xu Z C J. Tailoring the Co 3d-O 2p covalency in LaCoO3 by Fe substitution to promote oxygen evolution reaction[J]. Chem. Mater., 2017, 29(24): 10534-10541.
doi: 10.1021/acs.chemmater.7b04534 URL

[70] Mefford J T, Rong X, Abakumov A M, Hardin W G, Dai S, Kolpak A M, Johnston K P, Stevenson K J. Water electrolysis on La1-xSrxCoO3-δ perovskite electrocatalysts[J]. Nat. Commun., 2016, 7: 11053.
doi: 10.1038/ncomms11053 pmid: 27006166

[71] Hua B, Li M, Pang W Y, Tang W Q, Zhao S L, Jin Z H, Zeng Y M, Amirkhiz B S, Luo J L. Activating p-blocking centers in perovskite for efficient water splitting[J]. Chem, 2018, 4(12): 2902-2916.
doi: 10.1016/j.chempr.2018.09.012 URL

[72] Cao C, Shang C Y, Li X, Wang Y Y, Liu C X, Wang X Y, Zhou S M, Zeng J. Dimensionality control of electrocatalytic activity in perovskite nickelates[J]. Nano Lett., 2020, 20(4): 2837-2842.
doi: 10.1021/acs.nanolett.0c00553 pmid: 32207976

[73] Dai J, Zhu Y L, Zhong Y J, Miao J, Lin B W, Zhou W, Shao Z P. Enabling high and stable electrocatalytic activity of iron-based perovskite oxides for water splitting by combined bulk doping and morphology designing[J]. Adv. Mater. Interfaces, 2019, 6(1): 1801317.
doi: 10.1002/admi.201801317 URL

[74] Zhou S M, Miao X B, Zhao X, Ma C, Qiu Y H, Hu Z P, Zhao J Y, Shi L, Zeng J. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition[J]. Nat. Commun., 2016, 7: 11510.
doi: 10.1038/ncomms11510 pmid: 27187067

[75] Burke M S, Enman L J, Batchellor A S, Zou S H, Boett-cher S W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles[J]. Chem. Mater., 2015, 27(22): 7549-7558.
doi: 10.1021/acs.chemmater.5b03148 URL

[76] Bockris J O, Otagawa T. Mechanism of oxygen evolution on perovskites[J]. J. Phys. Chem. C, 1983, 87(15): 2960-2971.

[77] Grimaud A, Diaz-Morales O, Han B H, Hong W T, Lee Y L, Giordano L, Stoerzinger K A, Koper M T M, Shao-Horn Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution[J]. Nat. Chem., 2017, 9(5): 457-465.
doi: 10.1038/nchem.2695 pmid: 28430191

[78] Yoo J S, Rong X, Liu Y S, Kolpak A M. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites[J]. ACS Catal., 2018, 8(5): 4628-4636.
doi: 10.1021/acscatal.8b00612 URL

[79] Gao R Q, Deng M, Yan Q, Fang Z X, Li L C, Shen H Y, Chen Z F. Structural variations of metal oxide-based electrocatalysts for oxygen evolution reaction[J]. Small Methods, 2021, 5(12): 2100834.
doi: 10.1002/smtd.202100834 URL

[80] Fabbri E, Nachtegaal M, Binninger T, Cheng X, Kim B J, Durst J, Bozza F, Graule T, Schäublin R, Wiles L, Pertoso M, Danilovic N, Ayers K E, Schmidt T J. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting[J]. Nat. Mater., 2017, 16(9): 925-931.
doi: 10.1038/nmat4938 pmid: 28714982

[81] Danilovic N, Subbaraman R, Chang K C, Chang S H, Kang Y J J, Snyder J, Paulikas A P, Strmcnik D, Kim Y T, Myers D, Stamenkovic V R, Markovic N M. Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments[J]. J. Phys. Chem. Lett., 2014, 5(14): 2474-2478.
doi: 10.1021/jz501061n pmid: 26277818

[82] Ouimet R J, Glenn J R, De Porcellinis D, Motz A R, Carmo M, Ayers K E. The role of electrocatalysts in the development of gigawatt-scale PEM electrolyzers[J]. ACS Catal., 2022, 12(10): 6159-6171.

[83] Hubert M A, King L A, Jaramillo T F. Evaluating the case for reduced precious metal catalysts in proton exchange membrane electrolyzers[J]. ACS Energy Lett., 2022, 7(1): 17-23.
doi: 10.1021/acsenergylett.1c01869 URL

[84] Liu Y P, Liang X, Chen H, Gao R Q, Shi L, Yang L, Zou X X. Iridium-containing water-oxidation catalysts in acidic electrolyte[J]. Chin. J. Catal., 2021, 42(7): 1054-1077.
doi: 10.1016/S1872-2067(20)63722-6 URL

[85] Wan G, Freeland J W, Kloppenburg J, Petretto G, Nelson J N, Kuo D Y, Sun C J, Wen J G, Diulus J T, Herman G S, Dong Y Q, Kou R H, Sun J Y, Chen S, Shen K M, Schlom D G, Rignanese G M, Hautier G, Fong D D, Feng Z X, Zhou H, Suntivich J. Amorphization mechanism of SrIrO3 electrocatalyst: How oxygen redox initiates ionic diffusion and structural reorganization[J]. Sci. Adv., 2021, 7(2): eabc7323.
doi: 10.1126/sciadv.abc7323 URL

[86] Yang L, Yu G T, Ai X, Yan W S, Duan H L, Chen W, Li X T, Wang T, Zhang C H, Huang X R, Chen J S, Zou X X. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers[J]. Nat. Com



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.