•  
  •  
 

Corresponding Author

Hong-Mei Yu(hmyu@dicp.ac.cn);
Zhi-Gang Shao(zhgshao@dicp.ac.cn)

Abstract

The development of efficient and durable electrodes for anion exchange membrane water electrolyzers (AEMWEs) is essential for hydrogen production. In this work, 2D NiFe layered double hydroxides (NiFe LDHs) nanosheets were grown on the 1D cobaltous carbonate hydroxide nanowires array (Co-OH-CO3) and the unique 3D layered self-supporting nanorod array (NiFe LDHs@Co-OH-CO3/NF) electrode was obtained. Importantly, we demonstrated an efficient and durable self-supporting NiFe LDHs@Co-OH-CO3/NF electrode for oxygen evolution reaction (OER) and as the anode of the AEMWE. In a three-electrode system, the self-supporting NiFe LDHs@Co-OH-CO3/NF electrode showed excellent catalytic activity for OER, with an overpotential of 215 mV at a current density of 20 mA·cm-2 in 1 mol·L-1 KOH, and the promising AEMWE performance upon using as the anode, with a current density of 0.5 A·cm-2 at 1.72 V in 1 mol·L-1 KOH at 70 oC. The experimental results further revealed the outstanding performance of the electrode with the special morphological structure. The 3D layered structure of nanorod array electrode could effectively prevent the agglomeration of nanosheets, which is conducive to electron transfer and provides a large number of edge active sites for water electrolyzer.

Graphical Abstract

Keywords

NiFe layered double hydroxides, oxygen evolution reaction, anion exchange membrane water electrolyzer

Publication Date

2022-09-28

Online Available Date

2022-06-30

Revised Date

2022-06-10

Received Date

2022-05-23

References

[1] Zhang Z, Li X P, Zhong C, Zhao N Q, Deng Y D, Han X P, Hu W B. Spontaneous synthesis of silver-nanoparticle-decorated transition metal hydroxides for enhanced oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2020, 59(18): 7245-7250.
doi: 10.1002/anie.202001703 pmid: 32077180

[2] Xie X Y, Cao C S, Wei W B, Zhou S H, Wu X T, Zhu Q L. Ligand-assisted capping growth of self-supporting ultrathin FeNi-LDH nanosheet arrays with atomically dispersed chromium atoms for efficient electrocatalytic water oxidation[J]. Nanoscale, 2020, 12(10): 5817-5823.
doi: 10.1039/c9nr10781a pmid: 32119013

[3] Lv L, Yang Z X, Chen K, Wang C D, Xiong Y J. 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application[J]. Adv. Energy Mater., 2019, 9(17): 1803358.
doi: 10.1002/aenm.201803358 URL

[4] You B, Zhang Y D, Jiao Y, Davey K, Qiao S Z. Negative charging of transition-metal phosphides via strong electronic coupling for destabilization of alkaline water[J]. Angew. Chem. Int. Ed., 2019, 58(34): 11796-11800.
doi: 10.1002/anie.201906683 pmid: 31194286

[5] Qi J, Lin Y P, Chen D D, Zhou T H, Zhang W, Cao R. Autologous cobalt phosphates with modulated coordination sites for electrocatalytic water oxidation[J]. Angew. Chem. Int. Ed., 2020, 59(23): 8917-8921.
doi: 10.1002/anie.202001737 pmid: 32112670

[6] Yao R Q, Shi H, Wan W B, Wen Z, Lang X Y, Jiang Q. Flexible Co-Mo-N/Au electrodes with a hierarchical nano-porous architecture as highly efficient electrocatalysts for oxygen evolution reaction[J]. Adv. Mater., 2020, 32(10): 1907214.
doi: 10.1002/adma.201907214 URL

[7] Javaid S, Xu X M, Chen W, Chen J Y, Hsu H Y, Wang S, Yang X Y, Li Y G, Shao Z P, Jones F, Jia G H. Ni2+/Co2+ doped Au-Fe7S8 nanoplatelets with exceptionally high oxygen evolution reaction activity[J]. Nano Energy, 2021, 89: 106463.
doi: 10.1016/j.nanoen.2021.106463 URL

[8] Jiang G, Yu H M, Li Y H, Yao D W, Chi J, Sun S C, Shao Z G. Low-loading and highly stable membrane electrode based on an Ir@WOxNR ordered array for PEM water electrolysis[J]. ACS Appl. Mater. Interfaces, 2021, 13(13): 15073-15082.
doi: 10.1021/acsami.0c20791 URL

[9] Moriau L, Bele M, Marinko Ž, Ruiz-Zepeda F, Podboršek G K, Šala M, Šurca A K, Kovac J, Arcon I, Jovanovic P, Hodnik N, Suhadolnik L. Effect of the morphology of the high-surface-area support on the performance of the oxygen-evolution reaction for iridium nanoparticles[J]. ACS Catal., 2021, 11(2): 670-681.
doi: 10.1021/acscatal.0c04741 pmid: 33489433

[10] Yao Q, Huang B L, Xu Y, Li L G, Shao Q, Huang X Q. A chemical etching strategy to improve and stabilize RuO2-basd nano assemblies for acidic oxygen evolution[J]. Nano Energy, 2021, 84: 105909.
doi: 10.1016/j.nanoen.2021.105909 URL

[11] Han X P, Ling X F, Yu D S, Xie D Y, Li L L, Peng S J, Zhong C, Zhao N Q, Deng Y D, Hu W B. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution[J]. Adv. Mater., 2019, 31(49): 1905622.
doi: 10.1002/adma.201905622 URL

[12] Sun S N, Sun Y M, Zhou Y, Xi S B, Ren X, Huang B C, Liao H B, Wang L Y P, Du Y H, Xu Z C. Shifting oxygen charge towards octahedral metal: a way to promote water oxidation on cobalt spinel oxides[J]. Angew. Chem. Int. Ed., 2019, 58(18): 6042-6047.
doi: 10.1002/anie.201902114 pmid: 30860633

[13] Chen J S, Li H, Chen S M, Fei J Y, Liu C, Yu Z X, Shin K, Liu Z W, Song L, Henkelman G, Wei L, Chen Y. Co-Fe-Cr (oxy)hydroxides as efficient oxygen evolution reaction catalysts[J]. Adv. Energy Mater., 2021, 11(11): 2003412.
doi: 10.1002/aenm.202003412 URL

[14] Guo X L, Zheng X Q, Hu X L, Zhao Q N, Li L, Yu P, Jing C, Zhang Y X, Huang G S, Jiang B, Xu C H, Pan F S. Electrostatic adsorbing graphene quantum dot into nickel-based layered double hydroxides: Electron absorption/donor effects enhanced oxygen electrocatalytic activity[J]. Nano Energy, 2021, 84: 105932.
doi: 10.1016/j.nanoen.2021.105932 URL

[15] Wang Y, Yan L T, Dastafkan K, Zhao C, Zhao X B, Xue Y Y, Huo J M, Li S N, Zhai Q G. Lattice matching growth of conductive hierarchical porous MOF/LDH heteronanotube arrays for highly efficient water oxidation[J]. Adv. Mater., 2021, 33(8): 2006351.
doi: 10.1002/adma.202006351 URL

[16] Wang Y, Liu B R, Shen X J, Arandiyan H, Zhao T W, Li Y B, Garbrecht M, Su Z, Han L, Tricoli A, Zhao C. Engineering the activity and stability of MOF-nanocomposites for efficient water oxidation[J]. Adv. Energy Mater., 2021, 11(16): 2003759.
doi: 10.1002/aenm.202003759 URL

[17] Gao L K, Cui X, Wang Z W, Sewell C D., Li Z L, Liang S, Zhang M Y, Li J, Hu Y J, Lin Z Q. Operando unraveling photothermal-promoted dynamic active-sites generation in NiFe2O4 for markedly enhanced oxygen evolution[J]. PNAS, 2021, 118(7):e2023421118.
doi: 10.1073/pnas.2023421118 URL

[18] Wang K, Du H F, He S, Liu L, Yang K, Sun J M, Liu Y H, Du Z Z, Xie L H, Ai W, Huang W. Kinetically controlled, scalable synthesis of γ-FeOOH nanosheet arrays on nickel foam toward efficient oxygen evolution: The key role of in-situ-generated γ-NiOOH[J]. Adv. Mater., 2021, 33(11): 2005587.
doi: 10.1002/adma.202005587 URL

[19] Hao Y M, Li Y F, Wu J X, Meng L S, Wang J L, Jia C L, Liu T, Yang X J, Liu Z P, Gong M. Recognition of surface oxygen intermediates on NiFe oxyhydroxide oxygen-evolving catalysts by homogeneous oxidation reactivity[J]. J. Am. Chem. Soc., 2021, 143(3): 1493-1502.
doi: 10.1021/jacs.0c11307 pmid: 33439638

[20] Liu P, Chen B, Liang C W, Yao W T, Cui Y Z, Hu S Y, Zou P C, Zhang H, Fan H J, Yang C. Tip-enhanced electric field: A new mechanism promoting mass transfer in oxygen evolution reactions[J]. Adv. Mater., 2021, 33(9): 2007377.
doi: 10.1002/adma.202007377 URL

[21] Tran D T, Le H T, Hoa V H, Kim N H, Lee J H. Dual-coupling ultrasmall iron-Ni2P into P-doped porous carbon sheets assembled CuxS nanobrush arrays for overall water splitting[J]. Nano Energy, 2021, 84: 105861.
doi: 10.1016/j.nanoen.2021.105861 URL

[22] Han L, Dong S J, Wang E K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction[J]. Adv. Mater., 2016, 28(42): 9266-9291.
doi: 10.1002/adma.201602270 URL

[23] Kargar A, Yavuz S, Kim T K, Liu C-H, Kuru C, Rustomji C S, Jin S, Bandaru P R. Solution-processed CoFe2O4 nanoparticles on 3D carbon fiber papers for durable oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2015, 7(32): 17851-17856.
doi: 10.1021/acsami.5b04270 URL

[24] Shah J H, Xie Q X, Kuang Z C, Ge R L, Zhou W H, Liu D R, Rykov A I, Li X N, Luo J S, Wang J H. In-situ/op-erando 57Fe mössbauer spectroscopic technique and its applications in NiFe-based electrocatalysts for oxygen evolution reaction[J]. J. Electrochem., 2022, 28(3): 51-81.

[25] Zhao J, Zhang J J, Li Z Y, Bu X H. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction[J]. Small, 2020, 16(51): 2003916.
doi: 10.1002/smll.202003916 URL

[26] Dionigi F, Strasser P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes[J]. Adv. Energy Mater., 2016, 6(23): 1600621.
doi: 10.1002/aenm.201600621 URL

[27] Chi J, Yu H M, Qin B W, Fu L, Jia J, Yi B L, Shao Z G. Vertically aligned FeOOH/NiFe layered double hydroxides electrode for highly efficient oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2017, 9(1): 464-471.
doi: 10.1021/acsami.6b13360 URL

[28] Li Y, Guo S W, Jin T, Wang Y L, Cheng F Y, Jiao L F. Promoted synergy in core-branch CoP@NiFe-OH nano-hybrids for efficient electrochemical-/photovoltage-driven overall water splitting[J]. Nano Energy, 2019, 63: 103821.
doi: 10.1016/j.nanoen.2019.06.017 URL

[29] Zhao Y F, Zhang X, Jia X D, Waterhouse G I N., Shi R, Zhang X R, Zhan F, Tao Y, Wu L Z, Tung C H, O’Hare D, Zhang T R. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation[J]. Adv. Energy Mater., 2018, 8(18): 1703585.
doi: 10.1002/aenm.201703585 URL

[30] Kuai C G, Zhang Y, Wu D Y, Sokaras D, Mu L Q, Spence S, Nordlund D, Lin F, Du X W. Fully oxidized Ni-Fe layered double hydroxide with 100% exposed active sites for catalyzing oxygen evolution reaction[J]. ACS Catal., 2019, 9(7): 6027-6032.
doi: 10.1021/acscatal.9b01935 URL

[31] Chi J, Yu H M, Jiang G, Jia J, Qin B W, Yi B L, Shao Z G. Construction of orderly hierarchical FeOOH/NiFe layered double hydroxides supported on cobaltous carbonate hydroxide nanowire arrays for a highly efficient oxygen evolution reaction[J]. J. Mater. Chem. A, 2018, 6(8): 3397-3401.
doi: 10.1039/C7TA10747A URL

[32] Jeon S S, Lim J, Kang P W, Lee J W, Kang G, Lee H. Design principles of NiFe-layered double hydroxide anode catalysts for anion exchange membrane water electrolyzers[J]. ACS Appl. Mater. Interfaces, 2021, 13(31): 37179-37186.
doi: 10.1021/acsami.1c09606 URL

[33] Guo W W, Kim J, Kim H, Han G H, Jang H W, Kim S Y, Ahn S H. Sandwich-like Co(OH)x/Ag/Co(OH)2 nanosheet composites for oxygen evolution reaction in anion exchange membrane water electrolyzer[J]. J. Alloys Compd., 2021, 889: 161674.
doi: 10.1016/j.jallcom.2021.161674 URL

[34] Lee J, Jung H, Park Y S, Kwon N, Woo S, Selvam N. C S, Han G S, Jung H S, Yoo P J, Choi S M, Han J W, Lim B. Chemical transformation approach for high-performance ternary NiFeCo metal compound-based water splitting electrodes[J]. Appl. Catal., B, 2021, 294: 120246.
doi: 10.1016/j.apcatb.2021.120246 URL

[35] Zhang H, Shen G Q, Liu X Y, Ning B, Shi C X, Pan L, Zhang X W, Huang Z F, Zou J J. Self-supporting NiFe LDH-MoSx integrated electrode for highly efficient water splitting at the industrial electrolysis conditions[J]. Chin. J. Catal., 2021, 42(10): 1732-1741.
doi: 10.1016/S1872-2067(21)63796-8 URL

[36] Meena A, Thangavel P, Nissimagoudar A S, Singh A N, Jana A, Jeong D S, Im H, Kim K S. Bifunctional oxovanadate doped cobalt carbonate for high-efficient overall water splitting in alkaline-anion-exchange-membrane water-electrolyzer[J]. Chem. Eng. J., 2022, 430: 132623.
doi: 10.1016/j.cej.2021.132623 URL

[37] Wang J Y, Li S M, Lin R B, Tu G M, Wang J, Li Z Q. MOF-derived hollow β-FeOOH polyhedra anchored with α-Ni(OH)2 nanosheets as efficient electrocatalysts for oxygen evolution[J]. Electrochim. Acta, 2019, 301: 258-266.
doi: 10.1016/j.electacta.2019.01.157 URL

[38] Zhai P L, Xia M Y, Wu Y Z, Zhang G H, Gao J F, Zhang B, Cao S Y, Zhang Y T, Li Z W, Fan Z Z, Wang C, Zhang X M, Miller J T, Sun L C, Hou J G. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting[J]. Nat. Commun., 2021, 12(1): 4587.
doi: 10.1038/s41467-021-24828-9 pmid: 34321467

[39] Han M Y, Zhang X W, Gao H Y, Chen S Y, Cheng P, Wang P, Zhao Z Y, Dang R, Wang G. In situ semi-sacrificial template-assisted growth of ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution[J]. Chem. Eng. J., 2021, 426: 131348.
doi: 10.1016/j.cej.2021.131348 URL

[40] Dou Y H, He C T, Zhang L, Yin H J, Al-Mamun M, Ma J M, Zhao H J. Approaching the activity limit of CoSe2 for oxygen evolution via Fe doping and Co vacancy[J]. Nat. Commun., 2020, 11(1): 1664.
doi: 10.1038/s41467-020-15498-0 URL

[41] Peng L S, Yang N, Yang Y Q, Wang Q, Xie X Y, Sun-Waterhouse D, Shang L, Zhang T R, Waterhouse G I N. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2021, 60(46): 24612-24619.
doi: 10.1002/anie.202109938 pmid: 34523207

[42] Zhang J T, Yu L, Chen Y, Lu X F, Gao S Y, Lou X W. Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction[J]. Adv. Mater., 2020, 32(16): 1906432.
doi: 10.1002/adma.201906432 URL

[43] Yan Z, Wang E D, Gao J X, Yang J P, Wu C C, Jiang L H, Zhu M Y, Sun G Q. An exceptionally facile synthesis of high efficient oxygen evolution electrodes for zinc-ox-ygen batteries[J]. ChemElectroChem, 2017, 4(9): 2190-2195.
doi: 10.1002/celc.201700477 URL

[44] Wang Z P, Zhang J H, Yu Q Y, Yang H Y, Chen X, Yuan X, Huang K, Xiong X L. Synthesis of 3D CoO nanowires supported NiFe layered double hydroxide using an atmospheric pressure microplasma for high-performance oxygen evolution reaction[J]. Chem. Eng. J., 2021, 410: 128366.
doi: 10.1016/j.cej.2020.128366 URL

[45] Boppella R, Tan J W, Yang W, Moon J. Homologous CoP/NiCoP heterostructure on N-doped carbon for highly efficient and pH-universal hydrogen evolution electrocatalysis[J]. Adv. Funct. Mater., 2019, 29(6): 1807976.
doi: 10.1002/adfm.201807976 URL

[46] Du Y M, Qu H Q, Liu Y R, Han Y, Wang L, Dong B. Bimetallic CoFeP hollow microspheres as highly efficient bifunctional electrocatalysts for overall water splitting in alkaline media[J]. Appl. Surf. Sci., 2019, 465: 816-823.
doi: 10.1016/j.apsusc.2018.09.231 URL

[47] Cui L, Sun X P, Xu Y H, Yang W R, Liu J Q. Cobalt carbonate hydroxide nanowire array on Ti mesh: an efficient and robust 3D catalyst for on-demand hydrogen generation from alkaline NaBH4 solution[J]. Chem. Eur.J., 2016, 22(42): 14831-14835.

[48] Zhang Y X, Xiao Q Q, Guo X, Zhang X X, Xue Y F, Jing L, Zhai X, Yan Y M, Sun K N. A novel electrocatalyst for oxygen evolution reaction based on rational anchoring of cobalt carbonate hydroxide hydrate on multiwall carbon nanotubes[J]. J. Power Sources, 2015, 278: 464-472.
doi: 10.1016/j.jpowsour.2014.12.092 URL

[49] Veerasubramani G K, Chandrasekhar A, P. Sudhakaran M S P, Mok Y S, Kim S J. Liquid electrolyte mediated flexible pouch-type hybrid supercapacitor based on binderless core-shell nanostructures assembled with honeycomblike porous carbon[J]. J. Mater. Chem. A, 2017, 5(22): 11100-11113.
doi: 10.1039/C7TA01308F

[51] Bates M K, Jia Q Y, Doan H, Liang W T, Mukerjee S. Charge-transfer effects in Ni-Fe and Ni-Fe-Co mixed-metal oxides for the alkaline oxygen evolution reaction[J]. ACS Catal., 2016, 6(1): 155-161.
doi:
10.1021/acscatal.5b01481

[52] Louie M W, Bell A T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen[J]. J. Am. Chem. Soc., 2013, 135(33): 12329-12337.
doi: 10.1021/ja405351s pmid: URL

[54] Feng J X, Xu H, Dong Y T, Ye S H, Tong Y X, Li G R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2016, 55(11): 3694-3698.
10.1002/anie.201511447

[55] Yang Y, Kang Y K, Zhao H H, Dai X P, Cui M L, Luan X B, Zhang X, Nie F, Ren Z T, Song W Y. An interfacial electron transfer on tetrahedral NiS2/NiSe2 heterocages with dual-phase synergy for efficiently triggering the oxygen evolution reaction[J]. Small, 2020, 16(1): 1905083.
doi: 10.1002/smll.201905083

[56] Xia J L, Zhao H Y, Huang B L, Xu L L, Luo M, Wang J W, Luo F, Du Y P, Yan C H. Efficient optimization of electron/oxygen pathway by constructing ceria/hydroxide interface for highly active oxygen evolution reaction[J]. Adv. Funct. Mater., 2020, 30(9): 1908367.
doi: 10.1002/adfm.201908367

[57] Lei Z W, Bai J J, Li Y B, Wang Z L, Zhao C. Fabrication of nanoporous nickel-iron hydroxyl phosphate composite as bifunctional and reversible catalyst for highly efficient intermittent water splitting[J]. ACS Appl. Mater. Interfaces, 2017, 9(41): 35837-35846.
doi: 10.1021/acsami.7b10385

[58] Song B, Li K, Yin Y, Wu T, Dang L N, Caban-Acevedo M, Han J C, Gao T L, Wang X J, Zhang Z H, Schmidt J R, Xu P, Jin S. Tuning mixed nickel iron phosphosulfide nanosheet electrocatalysts for enhanced hydrogen and oxygen evolution[J]. ACS Catal., 2017, 7(12): 8549-8557.
doi: 10.1021/acscatal.7b02575 URL

[59] Wang J Y, Wang J, Zhang M, Li S M, Liu R, Li Z Q. Metal-organic frameworks-derived hollow-structured iron-cobalt bimetallic phosphide electrocatalysts for efficient oxygen evolution reaction[J]. J. Alloys Compd., 2020, 821: 153463.
doi: 10.1016/j.jallcom.2019.153463 URL

[60] Wu H, Lu X, Zheng G F, Ho G W. Topotactic engineering of ultrathin 2D nonlayered nickel selenides for full water electrolysis[J]. Adv. Energy Mater., 2018, 8(14): 1702704.
doi: 10.1002/aenm.201702704 URL

[61] Zhang P L, Li L, Nordlund D, Chen H, Fan L Z, Zhang B B, Sheng X, Daniel Q, Sun L C. Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation[J]. Nat. Commun., 2018, 9: 381.
doi: 10.1038/s41467-017-02429-9 pmid: URL

[63] Song F, Hu X L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis[J]. Nat. Commun., 2014, 5: 4477.
doi: 10.1038/ncomms5477 pmid: URL

[65] Park Y S, Yang J C, Lee J M, Jang M J, Jeong J, Choi W S, Kim Y, Yin Y D, Seo M H, Chen Z W, Choi S M. Superior performance of anion exchange membrane water electrolyzer: ensemble of producing oxygen vacancies and controlling mass transfer resistance[J]. Appl. Catal. B, 2020, 278: 119276.
URL

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.