•  
  •  
 

Authors

Xin Feng, Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China;CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
Bo-Wen Liu, Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China;
Ke-Xin Guo, Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China;
Lin-Feng Fan, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
Gen-Xiang Wang, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
Su-Qin Ci, Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, Jiangxi, ChinaFollow
Zhen-Hai Wen, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, ChinaFollow

Corresponding Author

Su-Qin Ci(sqci@nchu.edu.cn);
Zhen-Hai Wen(wen@fjirsm.ac.cn)

Abstract

Electrolytic hydrogen production is heavily restricted by high-energy consumption majorly due to the relatively high potential of anodic oxygen evolution reaction (OER). Development of OER-alternative reaction at the anode has been recently proposed as a promising pathway to address the associated issues. In this work, we report a hybrid acid/alkali dual-electrolyte electrolyzer by coupling acidic hydrogen evolution reaction (HER) using commercial Pt/C cathode with alkaline Electrocatalytic glycerol oxidation (GOR) which is implemented by developing a nickel foam (NF) supporting Co3O4 nanosheets anode that shows low overpotential and high selectivity toward GOR for formate production. The hybrid acid/alkali electrolyzer only requires an applied voltage of 0.55 V to achieve the electrolytic current density of 10 mA·cm–2 for glycerol conversion into formate at the anode and H2 production at the cathode with the Faraday efficiency of about 100%. The present work may open a new avenue to maximize the electron utilization efficiency and implement the energy-saving green route for H2 generation.

Graphical Abstract

Keywords

Self-supporting electrode; Glycerol oxidation; Electrocatalysis; Acid/alkali dual-electrolyte electrolyzer; Hydrogen generation

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Date

2023-02-28

Online Available Date

2022-08-31

Revised Date

2022-06-23

Received Date

2022-01-06

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.