•  
  •  
 

Corresponding Author

Wei Lv(lv.wei@sz.tsinghua.edu.cn);
Quan-Hong Yang(qhyangcn@tju.edu.cn)

Abstract

Practical applications of lithium-sulfur (Li-S) batteries are hindered mainly by the low sulfur utilization and severe capacity fading derived from the polysulfide shuttling. Catalysis is an effective remedy to those problems by promoting the conversion of polysulfides to reduce their accumulation in the electrolyte, which needs the catalyst to have efficient adsorption ability to soluble polysulfides and high activity for their conversion. In this work, we have proposed a bimetallic compound of NiCo2S4 anchored onto sulfur-doped graphene (NCS@SG) to fabricate a catalytic interlayer for Li-S batteries. Compared to CoS, the NiCo2S4 demonstrated much higher catalytic activity toward sulfur reduction reaction due to its multiple anchoring and catalytic active sites derived from the coordination of the bimetallic centers. As a result, the NCS@SG interlayer dramatically improved the specific capacity, rate performance, and cyclingstability of Li-S batteries. Especially, when the areal sulfur loading of the NCS@SG battery increased to 15.3 mg·cm–2, the high-capacity retention of 93.9 % could be achieved over 50 cycles.

Graphical Abstract

"

Keywords

Lithium-sulfur batteries; Lithium polysulfides; Catalysis; Bimetallic sulfide catalyst; Shuttle effec

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Date

2023-03-28

Online Available Date

2022-09-19

Revised Date

2022-08-23

Received Date

2022-07-30

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.