Abstract
Nanosized cobalt-based oxide (Co 3O 4, CoB 1.36 O 2.8 and CoB 0.5 Al 0.1 O 1.5 ) samples were prepared by rheological phase method and were tested as anodes in secondary lithium batteries. The cells were cycled between 0.01V and 3.00 V. The best electrochemical performance was obtained from the Li/Co 3O 4 cell, which retained 95% of its initial capacity (931 mAh/g) after 30 cycles. The doping of B, Al reduced the reversible capacity during the first discharge/charge cycle, and the quantity of reversible capacity reduced with B, A1 increasing. The modifying structures at difference charge and discharge states were investigated by ex situ XRD method. The results indicated which Li reacting from the classical Li insertion/deinsertion or Li-alloying processe, involves the formation/decomposition process of Li 2O and the reduction and oxidation of coblat oxides.
Keywords
Cobalt-based oxides, Lithium ion batteries, Negative electrode materials, XRD method
Publication Date
2002-11-28
Online Available Date
2002-11-28
Revised Date
2002-11-28
Received Date
2002-11-28
Recommended Citation
Feng HUANG, Zheng-yong YUAN, Yun-hong ZHOU, Ju-tang SUN.
Nano-sized Cobalt-based Oxides as Negative Electrode for Lithium-ion Batteries[J]. Journal of Electrochemistry,
2002
,
8(4): 397-403.
DOI: 10.61558/2993-074X.1469
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol8/iss4/3
References
[1] WhiteheadAH ,ElliottJM ,OwenJR .NanostructuredtinforuseasanegativeelectrodematerialinLi_ionbatteries[J].J .PowerSource,1999,81~82:33~38.
[2] StefanM ,TakahisaS ,YojiS ,etal.Electrochemicalcharacterizationoftinbasedcompositeoxidesasnega tiveelectrodesforlithiumbatteries[J].J .PowerSource,1998,73:216~223.
[3] HuangH ,KelderEM ,ChenL ,etal.ElectrochemicalcharacteristicsofSn1_xSixO2 asanodeforlithium_ionbatteries[J].J .PowerSource,1999,(81~82):362~367.
[4] BrousseT ,RetouxR ,HerterichU ,etal.Thin_filmcrystallineSnO2_lithiumelectrodes.1998,145:1~4.
[5] YoshioI,TadahikoK ,AkihiroM ,etal.Tin_basedamorphousoxide:Ahigh_capacitylithium_ion_storagematerial[J].Science,1999,276:1395~1397.
[6] AyouchiR ,MartinF ,RamosBarradoJR ,etal.Useofamorphoustin_oxidefilmsobtainedbyspraypyroly sisaselectrodesinlithiumbatteries[J].J .PowerSource,2000,87:106~111.
[7] MohamediM ,SeoJ ,TakahshiD ,etal.Amorphoustinoxidefilms:preparationandcharacterizationasananodeactivematerialforlithiumionbatteries[J].ElectrochimicaActa,2001,46:1161~1168.
[8] WeifengL ,XuejieL ,ZhaoxiangW ,etal.Studiesofstannicoxideasananodematerialforlithium_ionbatter ies[J].J .Electrochem.Soc.,1998,145:59~62.
[9] BelliardF ,ConnorPA ,IrvineJTS .Noveltinoxide_basedforLi_ionbatteries[J].SolidstateIonics,2000,135:163~167.
[10] JesseLC ,Rowsell,PralongV ,etal.Layeredlithiumironnitride:ApromisinganodematerialforLi_ionbatterial[J].J.Am.Chem.Soc.,2001,123:8598~8599.
[11] PoizotP ,LaruelleS ,GrugeonS ,etal.Nano_sizedtransition_metaloxidesasnegative_electrodematerialsforlithium_ionbatteries[J].Nature,2000,407:496~450.
[12] BuffatP ,BotelJP .Sizeeffectonthemeltingtemperatureofgoldparticles[J].Phys.Rev.,1976,A13:2287~2292.
[13] DolleM ,PoizotP ,TarasconJM ,etal.ExperimentalevidenceforelectrolyteinvolvementinthereversiblereactivityofCoOtowardcompoundsatlowpotential[J].ElectrochemicalandSolid-stateLetters,2002,5(1):A18~A21.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons