Abstract
The electron spin resonance(ESR) and 7Li_NMR magnetic resonance (7Li_NMR) studies on lithium intercalation into carbons were reviewed based on recently published papers, including those by the authors of this review. Two kinds of electronic spins were found in ESR studies. One corresponds to the charge carrier electrons and is called the Pauli spin. From the ESR intensity of Pauli spins, the curve of the density of electronic states can be deduced for the carbon material studied and, in turn, the contribution of the band model mechanism to the lithium intercalation can be calculated for the given carbon sample. The other is the Curie spin associated with localized spins but its relations with intercalation siteds are not clear at present. 7Li_NMR measurements revealed a number of different signals, their position and intensity depenging on the nature of carbon and the degree of intercalation. It is generally accepted that the NMR peak at 45±5×10-6 corresponds to the Li+ of LixC6(x=0.5~1) in the graphitised structure and this peak shift is the Knight Shift. The NMR peaks with a shift below 45 ×10-6 may correspond to the low concentration Li+ in the graphitised microstructures or the covalently bonded lithium in the disordered microstructures.It is pointed out that ESR and 7Li_NMR are well complementary to one another in the study of lithium intercalation into carbons and combined use of these two techniques will hopefully contribute much to the understanding of the structure_property relationship of lithiated carbons.
Publication Date
2003-02-28
Online Available Date
2003-02-28
Revised Date
2003-02-28
Received Date
2003-02-28
Recommended Citation
Xiao-rong Zhou, Zhen-ming Du, Lin Zhuang, Jun-tao Lu.
Magnetic Resonance Studies on Lithium Intercalation into Carbons[J]. Journal of Electrochemistry,
2003
,
9(1): 1-8.
DOI: 10.61558/2993-074X.1475
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol9/iss1/1
References
[1] KannoR,Takeda,Y,IchikawaT,etal.Carbonasnegativeelectrodesinlithiumsecondarycells[J].J.PowerSources,1989,26:535~543.
[2] MohriM,YanagisawaN,TajimaY,et.al.Rechargeablelithiumbatterybasedonpyrolyticcarbonasanegativeelectrode[J].J.PowerSources,1989,26:545~551.
[3] SatoK,NoguchiM,DemachiA,etal.AmechanismofLithiumstorageindisorderedcarbons[J].Sci-ence,1994,264:556~558.
[4] DahnJ,ZhengT,LiuY,etal.Mechanismsoflithiuminsertionincarbonaceousmaterials[J].Science,1995,270:590~593.
[5] TokumitsuK,FujimotoH,MabuchiA,etal.HighcapacitycarbonanodeforLi-ionbattery(Atheo-reticalexplanation)[J].Carbon,1999,37:1599~1605.
[6] EndoM,KimC,NishimuraK,etal.RecentdevelopmentofcarbonmaterialsorLiionbatteries[J].Carbon,2000,38:183~197.
[7] ZhengT,LiuY,FullerE,etal.Lithiuminsertioninhighcapacitycarbonaceousmaterials[J].J.Eletrochem.Soc.,1995,142:2581.
[8] WuG,WangC,ZhangX,etal.Structureandlithiuminsertionpropertiesofcarbonnanotubes[J].J.Electrochem.Soc.,1999,146:1696~1701.
[9] CastleJ.Paramagneticresonanceabsorptioningraphite[J].PhysRev.,1953,92:1063.
[10] MatsumuraY,WangS,NakagawaY,etal.Anelectron-spinresonancestudyoflithiumchargedcar-bonelectrdes[J].SyntheticMetals,1997,85:1411~1412.
[11] TakamiN,SatohA,OguchiM,etal.7Li-NMRandESRanalysisoflithiumstorageinahigh-capacityperylene-baseddisorderedcarbon[J].J.PowerSources,1997,68:283~286.
[12] ZhuangL,LuJT,AiXP,etal.In-situESRstudyonelectrochemicallithiumintercalationintopetroleumcoke[J].J.ElectroanalChem.,1995,397:315~319.
[13] ZhuangL(庄林).In-situESRstudiesofelectrochemicalsystems[D].Wuhan:WuhanUniversityPhDthysis,1998.
[14] GerischerH,DeckerF,ScrosatiB.Theelectronicandtheioniccontributiontothefreeenergyofal-kalimetalsinintercalationcompounds[J].JElectrochem.Soc.,1994,141:2297~2300.
[15] DuZhM,ZhuangL,LuJT.CurieandPaulispinsinlithiumintercalatedMCMB[J].ChineseChem.Lett.,2001,12:163~164.
[16] ZaghibK,TatsumiK,SawadaY,etal.7Li-NMRofwell-graphitizedvapor-growncarbonfibersandnaturalgraphitenegativeelectrodesofrechargeablelithium-ionbatteries[J].J.Electrochem.Soc.,1999,146:2784~2793.
[17] TatsumiK,AkaiT,ImamuraT,etal.7Li-Nuclearmagnetictesonanceobservationoflithiuminser-tionintomesocarbonmicrobeads[J].J.Electrochem.Soc,1996,43:1923~1930.
[18] DaiY,WangY,EshkenaziV,etal.Lithium-7nuclearmagneticresonanceinvestigationoflithiuminsertioninhardcarbon[J].J.Electrochem.Soc,1998,145:1179~-1183.
[19] TatsumiK,ConardJ,NakaharaM,etal.Lowtemperature7Li-NMRinvestigationsonlithiumin-sertedintocarbonanodesforrechargeablelithium-ioncells[J].J.PowerSources,1999,81~82:397~400.
[20] TatsumiK,KawamuraT,HiguchiS,etal.Anodecharacteristicsofnon-graphitizablcarbonfibersforrechargeablelithium-ionbatteries[J].J.PowerSources,1997,68:263~266.
[21] GuerinK,MenetrierM,Fevrier-BoubierA,etal.A7Li-NMRstudyofahardcarbonforlithium-ionrechargeablebatteries[J].Solidstateionics,2000,127:187~198.
[22] GeraldRE,KlinglerR,SandiG,etal.7Li-NMRstudyofintercalatedlithiumincurvedcarbonlat-tices[J].J.PowerSources,2000,89:237~243.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons