Abstract
The corrosion fatigue and dynamic strain aging behaviors of 22%Cr duplex stainless steel (DSS) in sodium chloride solutions were investigated. Austenitic 316L SS and ferrtic 430 SS were also used in this study for a comparison. The experimental results showed that no stress corrosion cracking (SCC) occurred in all these SSs tested in 3.5wt% NaCl solution at 80 ℃. However, dynamic strain aging (DSA) occurred in 316L austenitic SS and 22%Cr DSS during slow strain rate testing (SSRT) in this solution.The occurrence of DSA was dependent on solution temperature,strain rate and the presence of austenitic phase. The corrosion rate of fatigue crack growth (FCG) in 3.5wt% NaCl solution was found to be the highest for 430 ferritic SS.The high FCG rate in 430 SS was associated with brittle failure caused by hydrogen embrittlement.For 22%Cr DSS,accelerated FCG in NaCl solution was attributed to hydrogen embrittlement of the constituent ferrite phase.
Keywords
Duplex stainless steel, Corrosion fatigue, Dynamic strain aging, Stress corrosion cracking, Hydrogen embrittlement
Publication Date
2003-08-28
Online Available Date
2003-08-28
Revised Date
2003-08-28
Received Date
2003-08-28
Recommended Citation
Chuan-Ming Tseng, I-Hsuang Lo, Wen-Ta Tsai.
Corrosion Fatigue and Dynamic Strain Aging of Duplex Stainless Steel in Aqueous solution[J]. Journal of Electrochemistry,
2003
,
9(3): 265-271.
DOI: 10.61558/2993-074X.1514
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol9/iss3/2
References
[1] NilssonJO .Overview_superduplexstainlesssteels[J].MaterialsScienceandTechnology,1992,8(8):685.
[2] DavisonRM ,RedmondJD .Aguidetousingduplexstainlesssteels[J].MaterialsandDesign,1991,12(4):187.
[3] SedriksAJ .Newstainlesssteelsforseawaterservice[J].Corrosion,1989,45(6):510.
[4] TsaiWT ,ChenMS .Stresscorrosioncrackingof2205duplexstainlesssteelinconcentratedNaClsolution[J].CorrosionScience,2000,42:545.
[5] MiyasakaA ,KanamaraT ,OgawaH .Corrosionperformanceandapplicationlimitsofcorrosion_resistantalloysinoilfieldservice[J].Corrosion,1996,52(3):592.
[6] LatinenA ,H nninerH .Chloride_inducedstresscorrosioncrackingofpowdermetallurgyduplexstainlesssteel[J].Corrosion,1996,52(4):295.
[7] MagninT ,LardonJM ,CondreuseL .Anewapproachtolowcyclefatiguebehaviourofaduplexstainlesssteelbasedonthedeformationmechanismsoftheindividualphase[Z].In:H .D .Solomon,G .R .Halford,L .R .KaisandandB .N .Leis,LowCycleFatigue,ASTMSTPP 942,PA :ASTM ,1994:812.
[8] KrishnanKN .Mechanismofcorrosionfatigueinsuperduplexstainlesssteelin3.5 percentNaClsolution[J].InternationalJournalofFracture,1997,88:205.
[9] BondAP ,DundasHJ .Stresscorrosioncrackingofferriticstainlessstells,In:R .W .Staehle,J.Hochmann,R .D .McCright,J.E .Slater,StressCorrosionCrackingandHydrogenEmbrittlementofIronBaseAlloy[S].Houston,TX :NACE ,1997:1136.
[10] PickeringFB .Physicalmetallurgicaldevelopmentofstainlesssteels[Z].In:G .L .Dunlop,StainlessSteels’84,UK :TheInstituteofMetals,1985:12.
[11] AVanDenBeukel.Onthemechaismofserratedyieldinganddynamicstrainaging[J].ActaMetallurgica,1980,28:965.
[12] L .H .deAlmeida,MayIL ,EmygdioPRO .Mechanisticmodelingofdynamicstrainaginginausteniticstainlesssteel[J].MaterialsCharacteristic,1998,41:137.
[13] TsuzakiK ,HoriT ,MakiT ,etal.Dynamicstrainagingduringfatiguedeformationintype304austeniticstainlesssteel[J].MaterialsScienceandEngineering,1983,61:247.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons