Abstract
We report electrochemical and in_situ STM studies on Sb UPD onto Cu(111) and Cu(100) electrode surfaces in HClO4 and H2SO4 solutions. The results indicate that the electrode surface structure as well as anion can considerably influence Sb UPD. Sb UPD on Cu(100) forms open adlayer structures, which is accompanied by surface alloying due to the more open structure of the (100) surface, On Cu(111), a more compact Sb adlayer is formed instead. Anion adsorption influences the dynamics as well as the adlayer structure of Sb UPD. Owing to the strong adsorption of SO42-, the UPD of Sb on Cu(111) in H2SO4 solution initiates at the edge of the terrace followed by spreading towards the centre of the terrace. But in HClO4 solution, atomic height Sb islands are formed on Cu(111). On Cu(100), a (22×22) R45°( superstructure is formed in HClO4 solution. In contrast, a (4×4)superstructure is observed in co_adsorption with SO42- in H2SO4 solution.
Publication Date
2003-11-28
Online Available Date
2003-11-28
Revised Date
2003-11-28
Received Date
2003-11-28
Recommended Citation
Ji-hong WU, Jia-wei YAN, Jing TANG, Wen-yun HU, Bing-wei MAO.
Electrochemical and in-situ Scanning Tunneling Microscopy Studies on the Sb Underpotential Deposition on Cu Single Crystal Electrodes[J]. Journal of Electrochemistry,
2003
,
9(4): 393-401.
DOI: 10.61558/2993-074X.1523
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol9/iss4/3
References
[1] AdzicRRinGerischerH(Ed.),AdvancesinElectrochemistryandElectrochemicalEngineering.Vol.13[M].NewYork:Wiley_Interscience,1984.159.
[2] GuntherC,GuntherS,KopatzkiE,etal.Microscopicaspectsofthinmetalfilmepitaxialgrowthonmetallicsubstrates[J].Ber.Bunsen.Phys.Chem.,1993,97:522.
[3] KolbDM.inGerischerHandTobiasChW(Eds),AdvancesinElectrochemistryandElectrochemicalEngineering,Vol.11[M].NewYork:Wiley,1978.125.
[4] NakamuraM,EndoO,OhtaT,etal.SurfaceX_raydiffractionstudyofCuUPDonAu(111)electrodein0.5MH2SO4solution:thecoadsorptionstructureofUPDcopper,hydrationwatermoleculeandbisulfateaniononAu(111)[J].Surf.Sci.,2002,514:227.
[5] RandlerRJ,KolbDM,OckoBM,etal.ElectrochemicalcopperdepositiononAu(100):acombinedinsituSTMandinsitusurfaceX_raydiffractionstudy[J].Surf.Sci.,2000,447:187.
[6] OckoBM,RobinsonIK,WeinertM,etal.Thicknessinducedbucklingofbcccopperfilms[J].Phys.Rev.Lett.,1999.83(4):780.
[7] ShueCH,YauSL.InsituscanningtunnelingmicroscopyofunderpotentialdepositionofcopperatPt(100)electrodescoatedwithaniodinemonolayer[J].J.Phys.Chem.B,2001,105(23):5489.
[8] LayMD,StickneyJL.ElectrodepositionofAu_Cdalloynanostructuresonau(111)[J],J.Amer.Chem.Soc.,2003,125(5):1352.
[9] HerreroE,BullerLJ,AbrunaHD,UnderpotentialdepositionatsinglecrystalsurfacesofAu,Pt,Agandothermaterials[J],Chem.Rev.,2001,101(7):1897.
[10] JovicVD,JovicBM.UnderpotentialdepositionofcadmiumontoCu(111)andCu(110)fromchloridecontainingsolutions,J.SerbianChem.Soc.,2001,66(5):345~357.
[11] HumannS,HommrichJ,WandeltK.InsituscanningtunnelingmicroscopyofunderpotentialdepositionofleadonCu(100)insulfuricacidsolutions[J].Thinsolidfilms,2003,428(1~2):76.
[12] MoffatTP,OxidativechlorideadsorptionandleadupdonCu(100):Investigationsintosurfactant_assistedepitaxialgrowth[J].J.Phys.Chem.B,1998,102(49):10020.
[13] BrisardGM,ZenatiE,GasteigerHA,etal.Exsitulow_energyelectrondiffractionandAugerelectronspectroscopyandelectrochemicalstudiesoftheunderpotentialdepositionofleadonCu(100)andCu(111),Solid_liquideletrochem[J].Interface(ACSSymposiumSeries)1997,656:142.
[14] YanJW(颜佳伟),WuQ(吴琼),LinLG(林龙刚),etal.In_SituSTMstudyofSnUPDonCu(111)electrode[J].JournalofChineseElectronMicrosccopySociety(inChinese),2001,20(5):363.
[15] YanJW,WuJM,WuQ,etal.CompetitiveAdsorptionandSurfaceAlloying:UnderpotentialDepositionofSnonSulfate_CoveredCu(111),Langmuir,2003,19(19):7948.
[16] WardLC,StickneyJL.ElectrodepositionofSbontothelow_indexplanesofCuinaqueouschloridesolutions:studiesbyLEED,AESandelectrochemistry[J].Phys.Chem.Chem.Phys.,2001(3):3364.
[17] ClimentV,HerreroE,FeliuJM.ElectrocatalysisofformicacidandCOoxidationonantimony_modifiedPt(111)electrodes[J].Eelectrochim.acta,1998,44:1403.
[18] YangYY,ZhouZY,SunSG.InsituFTIRSstudiesofkineticsofHCOOHoxidationonPt(110)electrodemodifiedwithantimonyadatoms[J].J.Eelectroanal.Chem.,2001,500:233.
[19] KizhakevariamN,WeaverMJ.Structureandreactivityofbimetallicofelectrochemicalinterfaces_Infraredpectroscopicstudiesofcarbon_monoxideadsorptionandformic_acidelectroxidationonantimony_modifiedPt(100)andPt(100)[J].Surf.Sci.,1994,310:183.
[20] VanderVegtHA,VrijmoethJ,BehmRJ,etal.Sb_enhancednucleationinthehomoepitaxialgrowthofAg(111)[J].Phys.Rev.B,1998,57:4127.
[21] ScheuchV,PotthastK,VoigtlanderB,etal.Investigationofthegrowthofcooncu(111)andsb/cu(111)usingphotoelectronforwardscatering[J].Surf.Sci.1994,318:115.
[22] WilmsM,BroekmannP,KruftM,etal.STMinvestigationofspecificanionadsorptiononCu(111)insulfuricacidelectrolyte[J].Surf.Sci.,1998,404:83.
[23] WilmsM,BroekmannP,StuhlmannC,etal.In_situSTMinvestigationofadsorbatestructuresonCu(111)insulfuricacidelectrolyte[J].Surf.Sci.,1998,416:121.
[24] InukaiJ,SugitaS,ItayaK.UnderpotentialdepositionofmercuryonAu(111)investigatedbyinsituscanningtunnellingmicroscopy[J].J.Electroanal.Chem.,1996,403:159.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons