Abstract
RuO2/TiO2 composite materials have multitude of electrocatalytic applications including but not limited to CO2 reduction reaction (CO2RR). RuO2/TiO2 electrodes were previously prepared by repetitive coating and thermal decomposition (TD) of a Ru(III) precursor solution on Ti substrate. In this work, electrochemical potential cycling is applied to deposit amorphous RuO2 (α-RuO2) layers onto TiO2 nanotube array (TNA) (RuO2CV/TNA) preformed on Ti foil. SEM, GIXRD, and voltammetry are applied to characterize the structures of the resulting RuO2CV/TNA. Ru loading on the RuO2CV/TNA electrode is ca. 1/30 of that on the conventional RuO2TD/TNA electrode. Although both electrodes yield similar faradaic efficiencies (FEs) for the reduction products, the RuO2CV/TNA electrode displays a much higher reduction current, a more positive initial reduction potential and a better durability than the RuO2TD/TNA one. In addition to higher FEs for formate and CH4, the RuO2CV/TNA electrode yields the product of CO for the CO2RR in 0.1 mo•lL-1 KHCO3, which is not available in a PBS solution with pH 7.
Graphical Abstract
Keywords
CO2 reduction, amorphous RuO2, TiO2 nanotube array, electrodeposition
Publication Date
2017-04-28
Online Available Date
2017-04-28
Revised Date
2017-04-28
Received Date
2017-04-07
Recommended Citation
Bei Jiang, Lina Zhang, Xianxian Qin, Wenbin Cai.
Electrodeposition of RuO2 Layers on TiO2 Nanotube Array toward CO2 Electroreduction[J]. Journal of Electrochemistry,
2017
,
23(2): 238-244.
DOI: 10.13208/j.electrochem.161253
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol23/iss2/13
References
1. Zhang Z F, Xie E, Li W J, et al. Hydrogenation of carbon dioxide is promoted by a task-specific ionic liquid[J]. Angewandte Chemie International Edition, 2008, 47(6): 1127-1129.
2. Barrosse-Antle L E, Compton R G, Reduction of carbon dioxide in 1-butyl-3-methylimidazolium acetate[J]. Chemical Communications, 2009(25): 3744-3746.
3. Woolerton T W, Sheard S, Reisner E, et al. Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light[J]. Journal of the American Chemical Society, 2010, 132(7): 2132-2133.
4. Angamuthu R, Byers P, Lutz M, et al. Electrocatalytic CO2 conversion to oxalate by a copper complex[J]. Science, 2010, 327(5963): 313-315.
5. Begum A, Pickup P G, Electrocatalysis of CO2 reduction by ruthenium benzothiazole and bithiazole complexes[J]. Electrochemistry Communications, 2007, 9(10): 2525-2528.
6. Saha M S, Furuta T, Nishiki Y, Conversion of carbon dioxide to peroxycarbonate at boron-doped diamond electrode[J]. Electrochemistry Communications, 2004, 6(2): 201-204.
7. Liu L J, Li Ying, Understanding the reaction mechanism of photocatalytic reduction of CO2 with H2O on TiO2-based photocatalysts: A review[J]. Aerosol and Air Quality Research, 2014,14(2):453-469
8. Neatu S, Macia-Agullo J A, Garcia H, Solar light photocatalytic CO2 reduction: General considerations and selected bench-mark photocatalysts[J]. International Journal of Molecular Sciences, 2014, 15(4): 5246-5262.
9. Reske R, Duca M, Oezaslan M, et al. Controlling catalytic selectivities during CO2 electroreduction on thin Cu metal overlayers[J]. The Journal of Physical Chemistry Letters, 2013, 4(15): 2410-2413.
10. Zhang S, Kang P, Meyer T J, Nanostructured Tin catalysts for selective electrochemical reduction of carbon dioxide to formate[J]. Journal of the American Chemical Society, 2014, 136(5): 1734-7.
11. Gao D F, Wang J, Wu H H, et al. pH effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles[J]. Electrochemistry Communications, 2015, 55, 1-5.
12. Min X Q, Kanan M , Pd-catalyzed electrohydrogenation of carbon dioxide to formate: High mass activity at low overpotential and identification of the deactivation pathway[J]. Journal of American Chemical Sociaty, 2015,137(14):4701-4708.
13. Hori, Y. Electrochemical CO2 reduction on metal electrodes[M]. Modern Aspects of Electrochemistry,Springer: New York, 2008, 42, 89-189.
14. Cheung K C, Guo P, So M H, et al. Electrocatalytic reduction of carbon dioxide by a polymeric film of rhenium tricarbonyl dipyridylamine[J]. Journal of Organometallic Chemistry, 2009, 694(17): 2842-2845.
15. Yano J, Yamasaki S, Pulse-mode electrochemical reduction of carbon dioxide using copper and copper oxide electrodes for selective ethylene formation[J]. Journal of Applied Electrochemistry, 2008, 38(12): 1721-1726.
16. Spataru N, Tokuhiro K, Terashima C, et al. Electrochemical reduction of carbon dioxide at ruthenium dioxide deposited on boron-doped diamond[J]. Journal of Applied Electrochemistry, 2003, 33(12): 1205-1210.
17. Bandi A, Electrochemical Reduction Of Carbon-Dioxide on Conductive Metallic Oxides[J]. Journal of the Electrochemical Society, 1990, 137(7): 2157-2160.
18. Chaplin R P S, Wragg A A, Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation[J]. Journal of Applied Electrochemistry, 2003, 33(12): 1107-1123.
19. Zhou S H, Eichhorn B W, Jackson G, PtCu core-shell and alloy nanoparticles for NO reduction; Anomalous stability and reactivity[J]. Abstracts of Papers - American Chemical Society, 2005, 230, U2145-U2145.
20. Bandi A, Kuhne H M, Electrochemical reduction of carbon-dioxide in water-analysis of reaction-mechanism on ruthenium-titanium-oxide[J]. Journal of the Electrochemical Society, 1992, 139(6): 1605-1610.
21. Qu J P, Zhang X G, Wang Y G, et al. Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode[J]. Electrochimica Acta, 2005, 50(16-17): 3576-3580.
22. Popic J ., AvramovIvic M L, Vukovic N B, Reduction of carbon dioxide on ruthenium oxide and modified ruthenium oxide electrodes in 0.5 M NaHCO3[J]. Journal of Electroanalytical Chemistry, 1997, 421(1-2): 105-110.
23. Qin Y H., Yang H H, Lv R L, et al. TiO2 nanotube arrays supported Pd nanoparticles for ethanol electrooxidation in alkaline media[J]. Electrochimica Acta, 2013, 106, 372-377.
24. Liu S Q, Chen A C, Coadsorption of horseradish peroxidase with thionine on TiO2: Nanotubes for biosensing[J]. Langmuir, 2005, 21(18): 8409-8413.
25. Yoo J, Lee K, Schmuki P, Dewetted Au films form a highly active photocatalytic system on TiO2 nanotube-stumps[J]. Electrochemistry Communications, 2013, 34, 351-355.
26. Uddin M T, Nicolas Y, Olivier C, et al. Preparation of RuO2/TiO2 mesoporous heterostructures and rationalization of their enhanced photocatalytic properties by band alignment investigations[J]. The Journal of Physical Chemistry C, 2013, 117(42): 22098-22110.
27. Tian M, Wu G S, Chen A C, Unique electrochemical catalytic behavior of Pt nanoparticles deposited on TiO2 nanotubes[J]. ACS Catalysis, 2012, 2(3): 425-432.
28. Chen B, Hou J B, Lu, K., Formation mechanism of TiO2 nanotubes and their applications in photoelectrochemical water splitting and supercapacitors[J]. Langmuir, 2013, 29(19): 5911-5919.
29. Hu C C, Huang Y H, Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors[J]. Journalof the Electrochemical Society, 1999, 146(7): 2465-2471.
30. Mo Y B, Cai W B, Dong J A, et al. In situ surface enhanced raman scattering of ruthenium dioxide films in acid electrolytes[J]. Electrochemical and Solid State Letters, 2001, 4(9): E37-E38.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons