•  
  •  
 

Corresponding Author

Bartlett Philip(p.n.bartlett@soton.ac.uk)

Abstract

The electrografting of primary amines to carbon electrodes is now widely employed for electrode modification. Using a mixture of acetonitrile and 0.1 mol•L-1 aqueous sodium hydrogen carborate (NaHCO3) in the ratio of 4:1, the efficiency for coupling of mono-N-Boc-ethylenediamine (EDA-Boc) on the surface of glassy carbon was significantly improved as compared with that obtained using acetonitrile alone. In the presence of NaHCO3 the initial current determined in the cyclic voltammogram became higher, and the layer of attached amine was formed more rapidly, accordingly, the electrode was passivated more rapidly. The resulting film of EDA-Boc was shown to be more severely blocking toward the electrochemical reaction of [Fe(CN)6]3-. Following removal of the Boc protecting group and coupling of the free amine to anthraquinone-2-carboxylic acid, a higher surface coverage of the anthraquinone was obtained. Modelling for the electrograftng reaction using a simple kinetic scheme, it was demonstrated that the simulated voltammograms agreed well with the experimentally measured voltammograms . Comparison between the model fitting parameters obtained from the acetonitrile alone and the acetonitrile/NaHCO3 mixture showed that the competition between reaction of the amine radicals with the carbon surface and reaction in the homogeneous solution became more favourable for the surface reaction in the acetonitrile/NaHCO3 mixture.

Graphical Abstract

Publication Date

2017-04-28

Online Available Date

2017-01-29

Revised Date

2017-01-21

Received Date

2016-12-01

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.