Abstract
Solid oxide electrolysers are now attracting much more attentions because they can efficiently produce fuels by electrolyzing H2O/CO2. In this paper, a comprehensive introduction to the recent progress in the development of fuel electrode (cathode) materials is provided. The advantages, disadvantages and development trend towards various cathode materials are pointed out. The key scientific and technological problems in this field are emphasized.
Graphical Abstract
Keywords
solid oxide electrolysers, fuel electrode, H2O electrolysis, CO2 electrolysis, H2O/CO2, co-electrolysis
Publication Date
2020-04-28
Online Available Date
2020-02-14
Revised Date
2020-01-13
Received Date
2019-12-11
Recommended Citation
Ling-ting YE, Kui XIE.
Research Progress of Fuel Electrode in Oxide-Ion Conducting Solid Oxide Electrolysers[J]. Journal of Electrochemistry,
2020
,
26(2): 253-261.
DOI: 10.13208/j.electrochem.191146
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol26/iss2/6
References
[1] Li Y H( 李一航), Xia C R( 夏长荣 ). Recent advances of CO2 electrochemical reduction in solid oxide electrolysis cells[J]. Journal of Electrochemistry( 电化学), 2019,25(2): DOI: 10.13208/j.electrochem.191141.
[2] Zhang L X, Hu S Q, Zhu X F , et al. Electrochemical reduction of CO2 in solid oxide electrolysis cells[J]. Journal of Energy Chemistry, 2017,26(4):593-601.
[3] Chen L, Chen F L, Xia C R . Direct synjournal of methane from CO2-H2O co-electrolysis in tubular solid oxide electrolysis cells[J]. Energy & Environmental Science, 2014,7(12):4018-4022.
[4]
Mathiesen B, Lund H, Karlsson K . 100% Renewable energy systems, climate mitigation and economic growth[J]. Applied Energy, 2011,88(2):488-501.
doi: 10.1016/j.apenergy.2010.03.001
URL
[5]
Zhao C( 赵晨欢), Zhang W Q( 张文强), Yu B( 于波 ), et al. Solid oxide electrolyzer cells[J]. Progress in Chemistry( 化学进展), 2016,28(8):1265-1288.
doi: 10.7536/PC151105
URL
[6] Kaur G, Kulkarni AP, Giddey S , et al. Ceramic composite cathodes for CO2, conversion to CO in solid oxide electrolysis cells[J]. Applied Energy, 2018,221:131-138.
[7] Zheng Y, Wang J C, Yu B . A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): Advanced materials and technology[J]. Chemical Society Reviews, 2017,46(5):1427-1463.
[8]
Qiao J L, Liu Y Y, Hong F , et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014,43(2):631-675.
doi: 10.1039/C3CS60323G
URL
[9] Oloman C, Li H . Electrochemical processing of carbon dioxide[J]. ChemSuschem, 2008,1(5):385-391.
[10]
Gao D F, Zhang Y, Zhou Z W , et al. Enhancing CO2 electroreduction with the metal-oxide interface[J]. Journal of the American Chemical Society, 2017,139(16):5652-5655.
doi: 10.1021/jacs.7b00102
URL
[11]
Wang W Y, Gan L Z, Lemmon J P , et al. Enhanced carbon dioxide electrolysis at redox manipulated interfaces[J]. Nature Communications, 2019,10:1550.
doi: 10.1038/s41467-019-09568-1
URL
[12]
Lu J H, Zhu C L, Pan C C , et al. Highly efficient electrochemical reforming of CH4/CO2 in a solid oxide electrolyser[J]. Science Advances, 2018, 4(3): eaar5100.
doi: 10.1126/sciadv.aar5100
URL
[13]
Ye L T, Hu X L, Wang X , et al. Enhanced CO2 electrolysis with SrTiO3 cathode through dual doping strategy[J]. Journal of Materials Chemistry A, 2019,7(6):2764-2772.
doi: 10.1039/C8TA10188D
URL
[14]
Pellegrini LA, Soave G, Gamba S , et al. Economic analysis of a combined energy-methanol production plant[J]. Applied Energy, 2011,88(12):4891-4897.
doi: 10.1016/j.apenergy.2011.06.028
URL
[15]
Zhu C L, Hou S S, Hu X L , et al. Electrochemical conversion of methane to ethylene in a solid oxide electrolyzer[J]. Nature Communications, 2019,10:1173.
doi: 10.1038/s41467-019-09083-3
URL
[16] Han M F, Fan H, Peng S P . H2O/CO2 co-electrolysis in solid oxide electrolysis cells[J]. Engineering Sciences, 2014, 12(1)1:43-50.
[17] Jiao F, Pan X L, Gong K , et al. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate[J]. Angewandte Chemie International Edition, 2018,57(17):4692-4696.
[18]
Herring J S, James EO’Brien, Stoots CM , et al. Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology[J]. International Journal of Hydrogen Energy, 2007,32(4):440-450.
doi: 10.1016/j.ijhydene.2006.06.061
URL
[19] Laosiripojana N, Assabumrungrat S . Hydrogen production from steam and autothermal reforming of LPG over high surface area ceria[J]. Journal of Power Sources, 2006,158(2):1348-1357.
[20] Liu M, Aravind P V, Woudstra T , et al. Development of an integrated gasifier-solid oxide fuel cell test system: A detailed system study[J]. Journal of Power Sources, 2011,196(17):7277-7289.
[21] Ishihara T, Jirathiwathanakul N, Zhong H . Intermediate temperature solid oxide electrolysis cell using LaGaO3 based perovskite electrolyte[J]. Energy & Environmental Science, 2010,3(5):665-672.
[22] Ishihara T, Matsushita S, Sakai T , et al. Intermediate temperature solid oxide electrolysis cell using LaGaO3[J]. Solid State Ionics, 2012,255(4):77-80.
[23] Guan J, Doshi R, Lear G , et al. Ceramic oxygen generators with thin-film zirconia electrolytes[J]. Journal of the American Ceramic Society, 2004,85(11):2651-2654.
[24]
Tao G, Sridhar K R, Chan C . Study of carbon dioxide electrolysis at electrode/electrolyte interface: Part I. Pt/YSZ interface[J]. Solid State Ionics, 2004,175(1/4):615-619.
doi: 10.1016/j.ssi.2004.01.077
URL
[25] Tao G, Sridhar K R, Chan C L . Study of carbon dioxide electrolysis at electrode/electrolyte interface: Part II. Pt-YSZ cermet/YSZ interface[J]. Solid State Ionics, 2004,175(1/4):621-624.
[26] Hauch A, Ebbesen S D, Jensen S H , et al. Highly efficient high temperature electrolysis[J]. Journal of Materials Che-mistry, 2008,18(20):2331-2340.
[27]
Hauch A, Mogensen M, Hagen A . Ni/YSZ electrode de-gradation studied by impedance spectroscopy-effect of p(H2O)[J]. Solid State Ionics, 2011,192(1):547-551.
doi: 10.1016/j.ssi.2010.01.004
URL
[28]
Kim S D, Seo D W, Dorai A K , et al. The effect of gas compositions on the performance and durability of solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy, 2013,38(16):6569-6576.
doi: 10.1016/j.ijhydene.2013.03.115
URL
[29]
Keane M, Fan H, Han M F , et al. Role of initial microstructure on nickel-YSZ cathode degradation in solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy, 2014,39(33):18718-18726.
doi: 10.1016/j.ijhydene.2014.09.057
URL
[30] Bostani B, Ahmadi NP, Yazdani S , et al. Co-electrodeposition of functionally graded Ni-NCZ (nickel coated ZrO2) composite coating[J]. Journal of Materials Engineering & Performance, 2016,26(2):1-9.
[31]
Jensen S H, Larsen P H, Mogensen M . Hydrogen and synthetic fuel production from renewable energy sources[J]. International Journal of Hydrogen Energy, 2007,32(15):3253-3257.
doi: 10.1016/j.ijhydene.2007.04.042
URL
[32]
Ebbesen S D, Mogensen M . Electrolysis of carbon dioxide in solid oxide electrolysis cells[J]. Journal of Power Sources, 2009,193(1):349-358.
doi: 10.1016/j.jpowsour.2009.02.093
URL
[33] Singh V, Muroyama H, Matsui T , et al. Performance comparison between Ni-SDC and Ni-YSZ Cermet electrodes for carbon dioxide electrolysis on solid oxide electrolysis cell[J]. ECS Transactions, 2014,64(2):53-64.
[34]
Ebbesen S D, Graves C, Mogensen M . Production of synthetic fuels by co-electrolysis of steam and carbon dioxide[J]. International Journal of Green Energy, 2009,6(6):646-660.
doi: 10.1080/15435070903372577
URL
[35]
Mahmood A, Bano S, Yu J H , et al. Effect of operating conditions on the performance of solid electrolyte membrane reactor for steam and CO2 electrolysis[J]. Journal of Membrane Science, 2015,473:8-15.
doi: 10.1016/j.memsci.2014.09.002
URL
[36] Bierschenk D M, Wilson J R, Barnett S A . High efficiency electrical energy storage using a methane-oxygen solid oxide cell[J]. Energy & Environmental Science, 2011,4(3):944-951.
[37]
Nishida R, Puengjinda P, Nishino H , et al. High-performance electrodes for reversible solid oxide fuel cell/solid oxide electrolysis cell: Ni-Co dispersed ceria hydrogen electrodes[J]. RSC Advances, 2014,4(31):16260-16266.
doi: 10.1039/C3RA47089J
URL
[38]
Gaudillere C, Navarrete L, Serra J . Syngas production at intermediate temperature through H2O and CO2 electrolysis with a Cu-based solid oxide electrolyzer cell[J]. International Journal of Hydrogen Energy, 2014,39(7):3047-3054.
doi: 10.1016/j.ijhydene.2013.12.045
URL
[39]
Xing R M, Wang Y R, Zhu Y Q , et al. Co-electrolysis of steam and CO2 in a solid oxide electrolysis cell with La0.75Sr0.25Cr0.5Mn0.5O3-δ-Cu ceramic composite electrode[J]. Journal of Power Sources, 2015,274:260-264.
doi: 10.1016/j.jpowsour.2014.10.066
URL
[40]
Yang X, Irvine J T S . (La0.75Sr0.25)0.95Mn0.5Cr0.5O3 as the cathode of solid oxide electrolysis cells for high temperature hydrogen production from steam[J]. Journal of Materials Chemistry, 2008,18(20):2349-2354.
doi: 10.1039/b800163d
URL
[41]
Tao S, Irvine J . Synjournal and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-δ, a redox-stable, efficient perovskite anode for SOFCs[J]. Journal of The Electrochemical Society, 2004,151(2):A252-A259.
doi: 10.1149/1.1639161
URL
[42]
Tietz F, Sebold D, Brisse A , et al. Degradation phenomena in a solid oxide electrolysis cell after 9000h of operation[J]. Journal of Power Sources, 2013,223:129-135.
doi: 10.1016/j.jpowsour.2012.09.061
URL
[43] Gan L Z, Ye L T, Tao S W , et al. Titanate cathodes with enhanced electrical properties b achieved via growing surface Ni particles toward efficient carbon dioxide electrolysis[J]. Physical Chemistry Chemical Physics, 2016,18(4):3137-3143.
[44] Torrell M, García-Rodríguez S, Morata A , et al. Co-electrolysis of steam and CO2 in full-ceramic symmetrical SOECs: a strategy for avoiding the use of hydrogen as a safe gas[J]. Faraday Discussions, 2015,182:241-255.
[45] Zhu C L, Hou L X, Li S S , et al. Efficient carbon dioxide electrolysis with metal nanoparticles loaded La0.75Sr0.25Cr0.5-Mn0.5O3-δ cathodes[J]. Journal of Power Sources, 2017,363:177-184.
[46] Ruan C, Xie K, Yang L , et al. Efficient carbon dioxide electrolysis in a symmetric solid oxide electrolyzer based on nanocatalyst-loaded chromate electrodes[J]. International Journal of Hydrogen Energy, 2014,39(20):10338-10348.
[47] Morales R, Carlos J, Vázquez C , et al. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation[J]. Nature, 2006,439(7076):568-571.
[48] Marina O, Canfield N, Stevenson J . Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate[J]. Solid State Ionics, 2002,149(1/2):21-28.
[49] Li X, Zhao H L, Zhou X O , et al. Electrical conductivity and structural stability of La-doped SrTiO3 with A-site deficiency as anode materials for solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2010,35(15):7913-7918.
[50] Tsekouras G, Irvine J T S . The role of defect chemistry in strontium titanates utilised for high temperature steam electrolysis[J]. Journal of Materials Chemistry, 2011,21(25):9367-9376.
[51] Xie K, Zhang Y Q, Meng G Y , et al. Direct synjournal of methane from CO2/H2O in an oxygen-ion conducting solid oxide electrolyser[J]. Energy & Environmental Science, 2011,4(6):2218-2222.
[52] Li Y X, Zhou J E, Dong D H , et al. Composite fuel electrode La0.2Sr0.8TiO3-δ-Ce0.8Sm0.2O2-δ for electrolysis of CO2 in an oxygen-ion conducting solid oxide electrolyser[J]. Physical Chemistry Chemical Physics, 2012,14(44):15547-15553.
[53] Li S S, Li Y X, Gan Y , et al. Electrolysis of H2O and CO2 in an oxygen-ion conducting solid oxide electrolyzer with a La0.2Sr0.8TiO3+δ, composite cathode[J]. Journal of Power Sources, 2012,218:244-249.
[54] Qi W T, Gan Y, Yin D , et al. Remarkable chemical adsorption of manganese-doped titanate for direct carbon dioxide electrolysis[J]. Journal of Materials Chemistry A, 2014,2(19):6904-6915.
[55] Li Z, Li S S, Tseng CJ , et al. Redox-reversible perovskite ferrite cathode for high temperature solid oxide steam electrolyser[J]. Electrochimica Acta, 2017,229:48-54.
[56] Ye L T, Zhang M Y, Huang P , et al. Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures[J]. Nature Communications, 2017,8:14785.
[57] Miller D N, Irvine J T S . B-site doping of lanthanum strontium titanate for solid oxide fuel cell anodes[J]. Journal of Power Sources, 2011,196(17):7323-7327.
[58] Neagu D, Tsekouras G, Miller DN , et al. In situ growth of nanoparticles through control of non-stoichiometry[J]. Nature Chemistry, 2013,5(11):916-923.
[59] Xu S S, Dong D H, Wang Y , et al. Perovskite chromates cathode with resolved and anchored nickel nano-particles for direct high-temperature steam electrolysis[J]. Journal of Power Sources, 2014,246(3):346-355.
[60] Gan L Z, Ye L T, Ruan C , et al. Redox-reversible iron orthovanadate cathode for solid oxide steam electrolyzer[J]. Advanced Science, 2016,3(2):1500186.
[61] Li S S, Qin Q Q, Xie K , et al. High-performance fuel electrodes based on NbTi0.5M0.5O4 (M = Ni, Cu) with rever-sible exsolution of the nano-catalyst for steam electrolysis[J]. Journal of Materials Chemistry A, 2013,1(31):8984-8993.
[62] Shin T H, Myung J H, Verbraeken M , et al. Oxygen deficient layered double perovskite as an active cathode for CO2 electrolysis using a solid oxide conductor[J]. Faraday Discussions, 2015,182:227-239.
[63] Ye L T, Pan C C, Zhang M Y , et al. Highly efficient CO2 electrolysis on cathodes with exsolved alkaline earth oxide nanostructures[J]. ACS Applied Materials & Interfaces, 2017,9(30):25350-25357.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons