•  
  •  
 

Corresponding Author

Xian-zhu FU(xz.fu@siat.ac.cn)

Abstract

Increasing supplies of methane/shale gas have promoted global development of higher value chemicals such as ethylene production by ethane, which dramatically changes the markets of petrochemical industry. Clean and efficient transformation of ethane into higher value chemicals has far-reaching significance. Ethylene production through ethane steam cracking is a relatively matured technology for industrial production. However, the process consumes large amounts of energy and the presence of carbon deposition becomes a serious problem which is difficult to be solved. The cogenerated energy-chemicals solid oxide fuel cells have been widely studied because fuel gas can be converted into high-value chemicals via spontaneous reaction while releasing electrical energy. This paper summarizes the latest research progress in the electrochemical dehydrogenation of ethylene and electrical energy by using cogeneration solid oxide fuel cells, focusing on the mechanism and advantages of solid oxide fuel cells in ethane dehydrogenation, and the selections of electrolytes and electrode materials. It is demonstrated that the fuel cell technology has apparent advantages of realizing ethane symbiosis in ethylene production and electric energy generation with low energy consumption, and has great application potentials in the industrial production with high efficiency and energy saving.

Graphical Abstract

Keywords

ethane, ethylene, electric energy, cogeneration, solid oxide fuel cell

Publication Date

2020-04-28

Online Available Date

2020-03-29

Revised Date

2020-02-08

Received Date

2019-11-19

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.