Abstract
Copper interconnect using dual damascene technology has always been the main means for metallization in the back end of line process. However, with the size effect becoming more and more obvious due to feature size reduction, copper interconnect can no longer meet the demand for high circuit speed in Post-Moore era. Following copper interconnection, cobalt interconnection in chips attracts much attention as an interconnect technology by the next generation, which has been introduced in 7 nm node of integrated circuit manufacturing and below. The electron mean free path of cobalt (~10 nm) is much shorter than copper’s (39 nm), thus exhibiting the potential to further shrink the critical dimension without increasing line resistance and RC delay especially for contacts or local interconnects in the first few stack layers. Also, cobalt is considered as a suitable barrier/liner material, which means implementing cobalt interconnects needs no such layers and gives more space for conductive metal. Besides, higher melting point of cobalt makes it more favorable with good electromigration resistance compared with copper interconnects. Cobalt interconnection mainly adopts the wet electrodeposition method and the quality of the electrodeposite matters a lot to the reliability of the metal interconnects. For the reason of confidentiality and the limitation of research conditions, there are few research reports about cobalt interconnection. Based on existing patents and literature reports, this paper systematically introduces the advantages and current developments of cobalt interconnection. To better understand the behavior of the metal ions during electroplating process, this paper reviews the basic technology, bath composition and additives used in the electrolyte for cobalt electroplating from the point of view of solution chemistry and electrochemistry. For superconformal electroplating, there are several superfilling mechanisms for bottom-up electrodeposition with different emphasis, this paper gives a brief summary about three mechanisms and makes a comparison. Furthermore, this paper introduces the annealing control of cobalt deposition and the influence of impurities, since the evolution of grains and migration of impurities determine the sheet resistance. Finally, further study of cobalt interconnection technology is prospected. Cobalt interconnect is expected to be a proper alternative to extend Moore’s Law and promises to play a part in next advanced technology node. More researches about cobalt interconnection are worthwhile to be carried out in the future.
Graphical Abstract
Keywords
cobalt, electrodeposition, superfilling, interconnect, bottom-up
Publication Date
2022-06-28
Online Available Date
2022-05-07
Revised Date
2022-05-05
Received Date
2021-07-14
Recommended Citation
Li-Jun Wei, Zi-Han Zhou, Yun-Wen Wu, Ming Li, Su Wang.
Research Progresses of Cobalt Interconnect and Superfilling by Electroplating in Chips[J]. Journal of Electrochemistry,
2022
,
28(6): 2104431.
DOI: 10.13208/j.electrochem.210443
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss6/12
References
[1] Bourzac K. Cobalt could untangle chips’ wiring problems chipmakers are replacing some copper connections[J]. IEEE Spectr., 2018, 55(2): 12-13.
[2] Andricacos P C. Copper on-chip interconnections: A break-through in electrodeposition to make better chips[J]. Electrochem. Soc. Interface, 1999, 8(1): 32-37.
[3]
Steinhögl W, Schindler G, Steinlesberger G, Engelhardt M. Size-dependent resistivity of metallic wires in the mesoscopic range[J]. Phys. Rev. B, 2002, 66(7): 075414.
doi: 10.1103/PhysRevB.66.075414
URL
[4] Cheng Y L, Lee C Y, Huang Y L. Noble and precious metals-Properties, nanoscale effects and applications[M]. London: IntechOpen, 2018.
[5] Tigelaar H. How transistor area shrank by 1 million fold[M]. 1st ed.ed. Cham: Springer, 2020.
[6]
Gall D. Electron mean free path in elemental metals[J]. J. Appl. Phys., 2016, 119(8): 085101.
doi: 10.1063/1.4942216
URL
[7]
Durkan C, Welland M E. Size effects in the electrical resistivity of polycrystalline nanowires[J]. Phys. Rev. B, 2000, 61(20): 14215-14218.
doi: 10.1103/PhysRevB.61.14215
URL
[8] Akolkar R. Encyclopedia of interfacial chemistry 1st ed.ed.[M]. Amsterdam: Elsevier, 2018.
[9]
He M, Zhang X, Nogami T, Lin X, Kelly J, Kim H, Spooner T, Edelstein D, Zhao L. Mechanism of Co liner as enhancement layer for Cu interconnect gap-fill[J]. J. Electrochem. Soc., 2013, 160(12): D3040-D3044.
doi: 10.1149/2.009312jes
URL
[10] Bekiaris N, Wu Z Y, Ren H, Naik M., Park J H, Lee M, Ha T H, Hou W T, Bakke J R, Gage M., Wang Y, Tang J S. Cobalt fill for advanced interconnects:2017 IEEE International Interconnect Technology Conference (IITC), Hsinchu, May 16-18, 2017[C]. Piscataway: IEEE, 2017.
[11] Huang I. “Apple, Huawei Use TSMC, But Their 7nm SoCs Are Different”[EB/OL]. 2020. https://www.eetimes.com/apple-huawei-use-tsmc-but-their-7nm-socs-are-differet/#
[12] Xu Y, Ma F Y, Lei Y, Daito K, Banthia V, Wu K, Wang J Y, Chang M. Selectively deposition of corrosion-free cobalt contacts: US, WO2018094329A1[P/OL]. 2017-11-20
[2018-05-24].
[13] Van der Veen M H, Vandersmissen K, Dictus D, Demuynck S, Liu R, Bin X, Nalla P, Lesniewska A, Hall L, Croes K, Zhao L, Bömmels J, Kolics A, Tökei Z. Cobalt bottom-up contact and via prefill enabling advanced logic and DRAM technologies:2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM), Grenoble, May 18-21, 2015[C]. Piscataway: IEEE, 2015.
[14] Griggio F, Palmer J, Pan F, Toledo N, Schmitz A, Tsameret I, Kasim R, Leatherman G, Hicks J, Madhavan A, Shin J, Steigerwald J, Yeoh A, Auth C. Reliability of dual-damascene local interconnects featuring cobalt on 10 nm logic technology: 2018 IEEE International Reliability Physics Symposium (IRPS), Burlingame, March 11-15, 2018[C]. Piscataway: IEEE, 2018.
[15] Auth C, Aliyarukunju A, Asoro M, Bergstrom D, Bhagwat V, Birdsall J, Bisnik N, Buehler M, Chikarmane V, Ding G, Fu Q, Gomez H, Han W, Hanken D, Haran M, Hattendorf M., Heussner R, Hiramatsu H, Ho B, Jaloviar S, Jin I, Joshi S, Kirby S, Kosaraju S, Kothari H, Leatherman G, Lee K, Leib J, Madhavan A, Marla K, Meyer H, Mule, T, Parker C, Parthasarathy S, Pelto C, Pipes L, Post I, Prince M, Rahman A, Rajamani S, Saha A, Santos J D, Sharma M, Sharma V, Shin J, Sinha P, Smith P, Sprinkle M, Amour A S, Staus C, Suri R, Towner D, Tripathi A, Tura A, Ward C, Yeoh A. A 10 nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects: 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, Dec 2-6, 2017[C]. Piscataway: IEEE, 2017.
[16] Grover R, Acosta T, Andyke C, Armagan E, Auth C, Chugh S, Downes K, Hattendorf M, Jack N, Joshi S, Kasim R, Leatherman G, Lee S, Lin C, Madhavan A, Mao H, Lowrie A, Martin G, McPherson, Nayak P, Neale A, Nminibapiel, Orr B, Palmer J, Pelto C, Poon S. S, Post I, Pramanik, Rahman A, Ramey S, Seifert N, Sethi, Schmitz, Wu H., Yeoh A. A Reliability Overview of Intel’s 10+ Logic Technology: 2020 IEEE International Reliability Physics Symposium (IRPS), Dallas, April 28-May 30, 2020[C]. Piscataway: IEEE, 2020.
[17] Pedreira O V, Croes K, Lešniewska A, Wu C, van der Veen M H, de Messemaeker J, Vandersmissen K, Jourdan N, Wen L G, Adelmann C, Briggs B, Gonzalez V V, Bömmels J, Tökei Z. Reliability study on cobalt and ruthenium as alternative metals for advanced interconnects:2017 IEEE International Reliability Physics Symposium (IRPS), Monterey, April 2-6, 2017[C]. Piscataway: IEEE, 2017.
[18] Pedreira O V, Croes K, Zahedmanesh H, Vandersmissen K, van der Veen M H, Gonzalez V V, Dictus D, Zhao L, Kolies A, Tökei Z. Electromigration and Thermal Storage Study of Barrierless Co Vias:2018 IEEE International Interconnect Technology Conference (IITC), Santa Clara, June 4-7, 2018[C]. Piscataway: IEEE, 2018.
[19] Koike J, Haneda M, Iijima J, Wada M.. Cu Alloy Metallization for Self-Forming Barrier Process:2006 International Interconnect Technology Conference, Burlingame, June 5-7, 2006[C]. Piscataway: IEEE, 2006.
[20] Jezewski C J, Clarke J S, Indukuri T K, Gstrein F, Zierath D J. Cobalt based interconnects and methods of fabrication thereof: US, US9514983B2[P]. 2012-12-28
[2016-12-06].
[21] Scotten J. IEDM 2018 Imec on Interconnect Metals Beyond Copper[EB/OL]. (2018-12-28) https://semiwiki.com/semiconductor-services/ic-knowledge/7923-iedm-2018-imec-on-interconnect-metals-beyond-copper/
[22] Ackermann S, Si K, Bolton O, Bewick N, Adolf J, Wu J. An acidic aqueous composition for electrolytically depositing a copper deposit: Germany, EP3470552A1[P/OL]. 2017-10-13
[2019-04-17].
[23]
Rigsby M A, Spurlin T A, Reid J D. The multi-functional role of boric acid in cobalt electrodeposition and superfill[J]. J. Electrochem. Soc., 2020, 167(11): 112507.
doi: 10.1149/1945-7111/aba640
URL
[24]
Applegarth L M S G A, Pye C C, Cox J S. Tremaine P R. Raman spectroscopic and ab initio investigation of aqueous boric acid, borate, and polyborate speciation from 25 to 80 oC[J]. Ind. Eng. Chem. Res., 2017, 56(47): 13983-13996.
doi: 10.1021/acs.iecr.7b03316
URL
[25]
Graff A, Barrez E, Baranek P, Bachet M, Bénézeth P. Complexation of nickel ions by boric acid or (poly)borates[J]. J. Solut. Chem., 2017, 46(1): 25-43.
doi: 10.1007/s10953-016-0555-x
URL
[26]
Zech N, Landolt D. The influence of boric acid and sulfate ions on the hydrogen formation in Ni-Fe plating electrolytes[J]. Electrochim. Acta, 2000, 45(21): 3461-3471.
doi: 10.1016/S0013-4686(00)00415-1
URL
[27]
Demetriou A, Pashalidis I. Adsorption of boron on iron-oxide in aqueous solutions[J]. Desalin. Water Treat., 2012, 37(1-3): 315-320.
doi: 10.1080/19443994.2012.661288
URL
[28] Kienle M P, Mayer D, Arnold M, Fluegel A, Emnet C. Composition for cobalt plating comprising additive for void-free submicron feature filling: USA, 20190226107A1[P].
[29] Commander J, Whitten K, Paneccasio V JR, Sun S P, Yakobson E, Han J W. Cobalt filling of interconnects: US, WO2019009989A1[P/OL]. 2018-06-14
[2019-01-10].
[30]
Pan B S, Zhang Q X, Liu Z J, Yang Y. Influence of butynediol and tetrabutylammonium bromide on the morphology and structure of electrodeposited cobalt in the presence of saccharin[J]. Mater. Chem. Phys., 2019, 228: 37-44.
doi: 10.1016/j.matchemphys.2019.02.038
URL
[31]
Kiruba M, Jeyabharathi C. Discerning the oscillatory electrochemical response during electrodeposition of cobalt in the presence of but-2-yne-1,4-diol[J]. J. Solid State Electrochem., 2020, 24(11-12): 2997-3002.
doi: 10.1007/s10008-020-04735-7
URL
[32]
Huang Q, Lyons T W, Sides W D. Electrodeposition of cobalt for interconnect application: Effect of dimethylglyoxime[J]. J. Electrochem. Soc., 2016, 163(13): D715-D721.
doi: 10.1149/2.1111613jes
URL
[33]
Rigsby M A, Brogan L J, Doubina N V, Liu Y H, Opocensky E C, Spurlin T A, Zhou J, Reid J D. The critical role of pH gradient formation in driving superconformal cobalt deposition[J]. J. Electrochem. Soc., 2018, 166(1): D3167-D3174.
doi: 10.1149/2.0211901jes
URL
[34]
Rigsby M A, Brogan L J, Doubina N V, Liu Y H, Opocensky E C, Spurlin T A, Zhou J, Reid J D. Superconformal cobalt fill through the use of sacrificial oxidants[J]. ECS Transactions, 2017, 80(10): 767-776.
doi: 10.1149/08010.0767ecst
URL
[35]
Jeffrey M I, Choo W L, Breuer P L. The effect of additives and impurities on the cobalt electrowinning process[J]. Miner. Eng., 2000, 13(12): 1231-1241.
doi: 10.1016/S0892-6875(00)00107-2
URL
[36]
Wu J, Wafula F, Branagan S, Suzuki H, van Eisden J. Mechanism of cobalt bottom-up filling for advanced node interconnect metallization[J]. J. Electrochem. Soc., 2018, 166(1): D3136-D3141.
doi: 10.1149/2.0161901jes
URL
[37]
Kang J, Sung M, Byun J, Kwon O J, Kim J J. Proton sensitive additive for cobalt electrodeposition[J]. J. Electrochem. Soc., 2020, 167(12): 122510.
doi: 10.1149/1945-7111/abb284
URL
[38]
Kang J, Sung M, Byun J, Kwon O J, Kim J J. Superconformal cobalt electrodeposition with a hydrogen evolution reaction suppressing additive[J]. J. Electrochem. Soc., 2020, 167(16): 162514.
doi: 10.1149/1945-7111/abd3b9
URL
[39] American Institute of Mining, Metallurgical Engineers. Mining and metallurgy[M]. New York: The Institute, 1925. 159.
[40]
Edalati K, Hashiguchi Y, Iwaoka H, Matsunaga H, Valiev R Z, Horita Z. Long-time stability of metals after severe plastic deformation: Softening and hardening by self-annealing versus thermal stability[J]. Mater. Sci. Eng. A, 2018, 729: 340-348.
doi: 10.1016/j.msea.2018.05.079
URL
[41]
Doubina N V, Spurlin T A, Opocensky E C, Reid J D. The effect of thermal annealing on cobalt film properties and grain structure[J]. MRS Adv., 2020, 5(37-38): 1919-1927.
doi: 10.1557/adv.2020.257
URL
[42]
Dille J, Charlier J, Winand R. Effects of heat treatments on the ductility of cobalt electrodeposits[J]. J. Mater. Sci., 1998, 33(11): 2771-2779.
doi: 10.1023/A:1017569316182
URL
[43] Kamineni V, Kelly J, Adusumilli P, van der Straten O, Pranatharthiharan B. Devices and methods of cobalt fill metallization: USA, 10128151B2[P].
[44]
Hu Y, Deb S, Li D, Huang Q. Effects of organic additives on the impurity and grain structure of electrodeposited cobalt[J]. Electrochim. Acta, 2021, 368: 137594.
doi: 10.1016/j.electacta.2020.137594
URL
[45]
Pradhan N, Singh P, Tripathy B C, Das S C. Electrowinning of cobalt from acidic sulphate solutions-effect of chloride ion[J]. Miner. Eng., 2001, 14(7): 775-783.
doi: 10.1016/S0892-6875(01)00072-3
URL
Included in
Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Semiconductor and Optical Materials Commons