Abstract
Electrolytic copper foils have been widely used in printed circuit boards and lithium-ion batteries due to their simple production process and high economic value. In the process of electrolysis foil making, additives can greatly improve the performance of electrolytic copper foils. In this work, the copper foils were prepared in a self-designed plate electrodeposition device of which the operating principles were in accordance with those of actual industrial production. A series of the Virgin Make-up Solution (VMS: 312.5 g·L-1 CuSO4·5H2O, 100 g·L-1 H2SO4, 50 mg·L-1 Cl-) containing different additives was investigated to study the electrochemical behaviors of the electrolytes and their effects on the surface morphology, structure, and properties of the electrolytic copper foils. The results showed that HP had a strong depolarization effect in the combined additive system, which can accelerate the growth of copper nuclei, and had the optimal growth orientation of the enhanced copper (200) crystal surface. HVP had adsorption effect on the cathode surface and formed a barrier layer on the cathode active site, which inhibits the electrical deposition of copper. DPS had a strong depolarization effect at low concentration, with the high concentration, a polarization effect reduced the grain size. When HP and DPS coexisted, there was a competitive adsorption, showing certain polarization effect. The synergistic effect of HP with DPS and HVP could further reduce the grain size of electrolytic copper foils, reduce the surface roughness, and improve the mechanical properties and corrosion resistance of the coatings. The obtained electrolytic copper foils were uniformly dense, with an average grain size of 29.2 nm, an average roughness of 1.12 μm. and an average tensile strength of 399.5 MPa. The electrolytic copper foils obtained exhibited the superior corrosion resistance, became the ideal materials for lithium-ion battery anode fluid collection, and had high commercial value. Subsequently, the effects of DPS and HVP in the combined additive system on the surface morphology and physical properties of copper foil will be investigated to further explore the action mechanism of the combined additive and improve the electrodeposition model.
Graphical Abstract
Keywords
electrolytic copper foil, additives, electrochemical, tensile strength, corrosion resistant
Publication Date
2022-06-28
Online Available Date
2022-04-02
Revised Date
2022-02-21
Received Date
2022-01-14
Recommended Citation
Sen Yang, Wen-Chang Wang, Ran Zhang, Shui-Ping Qin, Min-Xian Wu, Naotoshi Mitsuzaki, Zhi-Dong Chen.
Effect of Sodium Alcohol Thiyl Propane Sulfonate on Electrolysis of High Performance Copper Foil for Lithium Ion Batteries[J]. Journal of Electrochemistry,
2022
,
28(6): 2104501.
DOI: 10.13208/j.electrochem.210450
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss6/5
References
[1]
Wang C B, Yin L W, Xiang D, Qi Y X. Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries[J]. ACS Appl. Mater. Interfaces, 2012, 4(3): 1636-1642.
doi: 10.1021/am2017909
URL
[2]
Varghese S P, Babu B, Prasannachandran R, Antony R, Shaijumon M M. Enhanced electrochemical properties of Mn3O4/graphene nanocomposite as efficient anode material for lithium ion batteries[J]. J. Alloy. Compd., 2019, 780: 588-596.
doi: 10.1016/j.jallcom.2018.11.394
[3]
An C S, Zhang B, Tang L B, Xiao B, He Z J, Zheng J C. Binder-free carbon-coated TiO2@graphene electrode by using copper foam as current collector as a high-performance anode for lithium ion batteries[J]. Ceram. Int., 2019, 45(10): 13144-13149.
doi: 10.1016/j.ceramint.2019.03.249
URL
[4]
Zuo T T, Wu X W, Yang C P, Yin Y X, Ye H, Li N W, Guo Y G. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes[J]. Adv. Mater., 2017, 29(29): 1700389.
doi: 10.1002/adma.201700389
URL
[5]
An G H, Cha S N, Ahn H J. Surface functionalization of the terraced surface-based current collector for a supercapacitor with an improved energy storage performance[J]. Appl. Surf. Sci., 2019, 478: 435-440.
doi: 10.1016/j.apsusc.2019.01.280
URL
[6]
Shin D Y, Park D H, Ahn H J. Interface modification of an Al current collector for ultrafast lithium-ion batteries[J]. Appl. Surf. Sci., 2019, 475: 519-523.
doi: 10.1016/j.apsusc.2019.01.016
URL
[7]
Lu L L, Ge J, Yang J N, Chen S M, Yao H B, Zhou F, Yu S H. Free-standing copper nanowire network current collector for improving lithium anode performance[J]. Nano Lett., 2016, 16(7): 4431-4437.
doi: 10.1021/acs.nanolett.6b01581
URL
[8]
Park H, Um J H, Choi H, Yoon W S, Sung Y E, Choe H. Hierarchical micro-lamella-structured 3D porous copper current collector coated with tin for advanced lithium-ion batteries[J]. Appl. Surf. Sci., 2017, 399: 132-138.
doi: 10.1016/j.apsusc.2016.12.043
URL
[9]
Cui Y, Fu Y Z. Enhanced cyclability of Li/polysulfide batteries by a polymer-modified carbon paper current collector[J]. ACS Appl. Mater. Interfaces, 2015, 7(36): 20369-20376.
doi: 10.1021/acsami.5b06214
URL
[10]
Jin L(金磊), Yang J Q(杨家强), Yang F Z(杨防祖), Zhan D P(詹东平), Tian Z Q(田中群), Zhou S M(周绍民). Research progresses of copper interconnection in chips[J]. J. Electrochem.(电化学), 2020, 26(4): 521-530.
doi: 10.13208/j.electrochem.200212
[11] Yin L(殷列), Wang Z L(王增林). Behavior of copper electrodeposition in copper electroplating solution with different PEG molecular weight[J]. J. Electrochem.(电化学), 2008, 14(4): 431-435.
[12]
Meudre C, Ricq L, Hihn J Y, Moutarlier V, Monnin A, Heintz O. Adsorption of gelatin during electrodeposition of copper and tin-copper alloys from acid sulfate electrolyte[J]. Surf. Coat. Technol., 2014, 252: 93-101.
doi: 10.1016/j.surfcoat.2014.04.050
URL
[13]
Dutra A J B, O'Keefe T J. Copper nucleation on titanium for thin film applications[J]. J. Appl. Electrochem., 1999, 29(10): 1217-1227.
doi: 10.1023/A:1003537318303
URL
[14] Lee Y K, O’Keefe T J. Evaluating and monitoring nucleation and growth in copper foil[J]. JOM-J. Miner. Met. Mater. Soc., 2002, 54(4): 37-41.
[15] Zhong Q(钟琴). Effect of additives MPS, PEG, Cl- on electrodeposition of copper[D]. Chongqing: Chongqing University, 2010.
[16] Wang Y(王义). Study on the properties and mechanism of copper microvia filling additive[D]. Jiangxi: Jiangxi University of Science and Technology, 2018.
[17]
Dow W P, Li C C, Lin M W, Su G W, Huang C C. Copper fill of microvia using a thiol-modified Cu seed layer and various levelers[J]. J. Electrochem. Soc., 2009, 156(8): D314-D320.
doi: 10.1149/1.3147273
URL
[18]
Tan M, Guymon C, Wheeler D R, Harb J N. The role of SPS, MPSA, and chloride in additive systems for copper electrodeposition[J]. J. Electrochem. Soc., 2007, 154(2): D78-D81.
doi: 10.1149/1.2401057
URL
[19]
Zhang Q B, Hua Y X, Wang Y T, Lu H J, Zhang X Y. Effects of ionic liquid additive [BMIM] HSO4 on copper electro-deposition from acidic sulfate electrolyte[J]. Hydrometallurgy, 2009, 98(3-4): 291-297.
doi: 10.1016/j.hydromet.2009.05.017
URL
[20]
Wang X M, Wang K, Xu J, Li J, Lv J E, Zhao M, Wang L M. Quinacridone skeleton as a promising efficient leveler for smooth and conformal copper electrodeposition[J]. Dyes Pigment., 2020, 181: 108594.
doi: 10.1016/j.dyepig.2020.108594
URL
[21]
Wang Z Q, Gong Y L, Jing C, Huang H J, Li H R, Zhang S T, Gao F. Synthesis of dibenzotriazole derivatives bearing alkylene linkers as corrosion inhibitors for copper in sodium chloride solution: A new thought for the design of organic inhibitors[J]. Corrosion Sci., 2016, 113: 64-77.
doi: 10.1016/j.corsci.2016.10.005
URL
[22]
Li C C, Guo X Y, Shen S, Song P, Xu T, Wen Y, Yang H F. Adsorption and corrosion inhibition of phytic acid calcium on the copper surface in 3wt% NaCl solution[J]. Corrosion Sci., 2014, 83: 147-154.
doi: 10.1016/j.corsci.2014.02.001
URL
[23]
Tang M X, Zhang S T, Qiang Y J, Chen S J, Luo L, Gao J Y, Feng L, Qin Z J. 4,6-Dimethyl-2-mercaptopyrimidine as a potential leveler for microvia filling with electroplating copper[J]. RSC Adv., 2017, 7(64): 40342-40353.
doi: 10.1039/C7RA06857C
URL
[24]
Varvara S, Muresan L, Popescu I C, Maurin G. Comparative study of copper electrodeposition from sulphate acidic electrolytes in the presence of IT-85 and of its components[J]. J. Appl. Electrochem., 2005, 35(1): 69-76.
doi: 10.1007/s10800-004-2398-1
URL
[25]
Liu Y, Li S Y, Zhang J J, Liu J A, Han Z W, Ren L Q. Corrosion inhibition of biomimetic super-hydrophobic electrodeposition coatings on copper substrate[J]. Corrosion Sci., 2015, 94: 190-196.
doi: 10.1016/j.corsci.2015.02.009
URL
[26]
Hernandez-Viezcas J A, Castillo-Michel H, Andrews J C, Cotte M, Rico C, Peralta-Videa J R, Ge Y, Priester J H, Holden P A, Gardea-Torresdey J L. In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max)[J]. ACS Nano, 2013, 7(2): 1415-1423.
doi: 10.1021/nn305196q
pmid: 23320560
[27]
Mishra R, Balasubramaniam R. Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel[J]. Corrosion Sci., 2004, 46(12): 3019-3029.
doi: 10.1016/j.corsci.2004.04.007
URL
[28]
Pang N, Chen L. Effect of substrate orientation on critical thickness of Cu thin films[J]. Electron. Mater. Lett., 2011, 7(4): 359-363.
doi: 10.1007/s13391-011-0170-3
URL
[29]
Lu L, Chen X, Huang X, Lu K. Revealing the maximum strength in nanotwinned copper[J]. Science., 2009, 323(5914): 607-610.
doi: 10.1126/science.1167641
pmid: 19179523
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons