Corresponding Author

Wen-Chang Wang(king717@cczu.edu.cn);
Zhi-Dong Chen(zdchen@cczu.edu.cn)


Electrolytic copper foils have been widely used in printed circuit boards and lithium-ion batteries due to their simple production process and high economic value. In the process of electrolysis foil making, additives can greatly improve the performance of electrolytic copper foils. In this work, the copper foils were prepared in a self-designed plate electrodeposition device of which the operating principles were in accordance with those of actual industrial production. A series of the Virgin Make-up Solution (VMS: 312.5 g·L-1 CuSO4·5H2O, 100 g·L-1 H2SO4, 50 mg·L-1 Cl-) containing different additives was investigated to study the electrochemical behaviors of the electrolytes and their effects on the surface morphology, structure, and properties of the electrolytic copper foils. The results showed that HP had a strong depolarization effect in the combined additive system, which can accelerate the growth of copper nuclei, and had the optimal growth orientation of the enhanced copper (200) crystal surface. HVP had adsorption effect on the cathode surface and formed a barrier layer on the cathode active site, which inhibits the electrical deposition of copper. DPS had a strong depolarization effect at low concentration, with the high concentration, a polarization effect reduced the grain size. When HP and DPS coexisted, there was a competitive adsorption, showing certain polarization effect. The synergistic effect of HP with DPS and HVP could further reduce the grain size of electrolytic copper foils, reduce the surface roughness, and improve the mechanical properties and corrosion resistance of the coatings. The obtained electrolytic copper foils were uniformly dense, with an average grain size of 29.2 nm, an average roughness of 1.12 μm. and an average tensile strength of 399.5 MPa. The electrolytic copper foils obtained exhibited the superior corrosion resistance, became the ideal materials for lithium-ion battery anode fluid collection, and had high commercial value. Subsequently, the effects of DPS and HVP in the combined additive system on the surface morphology and physical properties of copper foil will be investigated to further explore the action mechanism of the combined additive and improve the electrodeposition model.

Graphical Abstract


electrolytic copper foil, additives, electrochemical, tensile strength, corrosion resistant

Publication Date


Online Available Date


Revised Date


Received Date



[1] Wang C B, Yin L W, Xiang D, Qi Y X. Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries[J]. ACS Appl. Mater. Interfaces, 2012, 4(3): 1636-1642.
doi: 10.1021/am2017909 URL

[2] Varghese S P, Babu B, Prasannachandran R, Antony R, Shaijumon M M. Enhanced electrochemical properties of Mn3O4/graphene nanocomposite as efficient anode material for lithium ion batteries[J]. J. Alloy. Compd., 2019, 780: 588-596.
doi: 10.1016/j.jallcom.2018.11.394

[3] An C S, Zhang B, Tang L B, Xiao B, He Z J, Zheng J C. Binder-free carbon-coated TiO2@graphene electrode by using copper foam as current collector as a high-performance anode for lithium ion batteries[J]. Ceram. Int., 2019, 45(10): 13144-13149.
doi: 10.1016/j.ceramint.2019.03.249 URL

[4] Zuo T T, Wu X W, Yang C P, Yin Y X, Ye H, Li N W, Guo Y G. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes[J]. Adv. Mater., 2017, 29(29): 1700389.
doi: 10.1002/adma.201700389 URL

[5] An G H, Cha S N, Ahn H J. Surface functionalization of the terraced surface-based current collector for a supercapacitor with an improved energy storage performance[J]. Appl. Surf. Sci., 2019, 478: 435-440.
doi: 10.1016/j.apsusc.2019.01.280 URL

[6] Shin D Y, Park D H, Ahn H J. Interface modification of an Al current collector for ultrafast lithium-ion batteries[J]. Appl. Surf. Sci., 2019, 475: 519-523.
doi: 10.1016/j.apsusc.2019.01.016 URL

[7] Lu L L, Ge J, Yang J N, Chen S M, Yao H B, Zhou F, Yu S H. Free-standing copper nanowire network current collector for improving lithium anode performance[J]. Nano Lett., 2016, 16(7): 4431-4437.
doi: 10.1021/acs.nanolett.6b01581 URL

[8] Park H, Um J H, Choi H, Yoon W S, Sung Y E, Choe H. Hierarchical micro-lamella-structured 3D porous copper current collector coated with tin for advanced lithium-ion batteries[J]. Appl. Surf. Sci., 2017, 399: 132-138.
doi: 10.1016/j.apsusc.2016.12.043 URL

[9] Cui Y, Fu Y Z. Enhanced cyclability of Li/polysulfide batteries by a polymer-modified carbon paper current collector[J]. ACS Appl. Mater. Interfaces, 2015, 7(36): 20369-20376.
doi: 10.1021/acsami.5b06214 URL

[10] Jin L(金磊), Yang J Q(杨家强), Yang F Z(杨防祖), Zhan D P(詹东平), Tian Z Q(田中群), Zhou S M(周绍民). Research progresses of copper interconnection in chips[J]. J. Electrochem.(电化学), 2020, 26(4): 521-530.
doi: 10.13208/j.electrochem.200212

[11] Yin L(殷列), Wang Z L(王增林). Behavior of copper electrodeposition in copper electroplating solution with different PEG molecular weight[J]. J. Electrochem.(电化学), 2008, 14(4): 431-435.

[12] Meudre C, Ricq L, Hihn J Y, Moutarlier V, Monnin A, Heintz O. Adsorption of gelatin during electrodeposition of copper and tin-copper alloys from acid sulfate electrolyte[J]. Surf. Coat. Technol., 2014, 252: 93-101.
doi: 10.1016/j.surfcoat.2014.04.050 URL

[13] Dutra A J B, O'Keefe T J. Copper nucleation on titanium for thin film applications[J]. J. Appl. Electrochem., 1999, 29(10): 1217-1227.
doi: 10.1023/A:1003537318303 URL

[14] Lee Y K, O’Keefe T J. Evaluating and monitoring nucleation and growth in copper foil[J]. JOM-J. Miner. Met. Mater. Soc., 2002, 54(4): 37-41.

[15] Zhong Q(钟琴). Effect of additives MPS, PEG, Cl- on electrodeposition of copper[D]. Chongqing: Chongqing University, 2010.

[16] Wang Y(王义). Study on the properties and mechanism of copper microvia filling additive[D]. Jiangxi: Jiangxi University of Science and Technology, 2018.

[17] Dow W P, Li C C, Lin M W, Su G W, Huang C C. Copper fill of microvia using a thiol-modified Cu seed layer and various levelers[J]. J. Electrochem. Soc., 2009, 156(8): D314-D320.
doi: 10.1149/1.3147273 URL

[18] Tan M, Guymon C, Wheeler D R, Harb J N. The role of SPS, MPSA, and chloride in additive systems for copper electrodeposition[J]. J. Electrochem. Soc., 2007, 154(2): D78-D81.
doi: 10.1149/1.2401057 URL

[19] Zhang Q B, Hua Y X, Wang Y T, Lu H J, Zhang X Y. Effects of ionic liquid additive [BMIM] HSO4 on copper electro-deposition from acidic sulfate electrolyte[J]. Hydrometallurgy, 2009, 98(3-4): 291-297.
doi: 10.1016/j.hydromet.2009.05.017 URL

[20] Wang X M, Wang K, Xu J, Li J, Lv J E, Zhao M, Wang L M. Quinacridone skeleton as a promising efficient leveler for smooth and conformal copper electrodeposition[J]. Dyes Pigment., 2020, 181: 108594.
doi: 10.1016/j.dyepig.2020.108594 URL

[21] Wang Z Q, Gong Y L, Jing C, Huang H J, Li H R, Zhang S T, Gao F. Synthesis of dibenzotriazole derivatives bearing alkylene linkers as corrosion inhibitors for copper in sodium chloride solution: A new thought for the design of organic inhibitors[J]. Corrosion Sci., 2016, 113: 64-77.
doi: 10.1016/j.corsci.2016.10.005 URL

[22] Li C C, Guo X Y, Shen S, Song P, Xu T, Wen Y, Yang H F. Adsorption and corrosion inhibition of phytic acid calcium on the copper surface in 3wt% NaCl solution[J]. Corrosion Sci., 2014, 83: 147-154.
doi: 10.1016/j.corsci.2014.02.001 URL

[23] Tang M X, Zhang S T, Qiang Y J, Chen S J, Luo L, Gao J Y, Feng L, Qin Z J. 4,6-Dimethyl-2-mercaptopyrimidine as a potential leveler for microvia filling with electroplating copper[J]. RSC Adv., 2017, 7(64): 40342-40353.
doi: 10.1039/C7RA06857C URL

[24] Varvara S, Muresan L, Popescu I C, Maurin G. Comparative study of copper electrodeposition from sulphate acidic electrolytes in the presence of IT-85 and of its components[J]. J. Appl. Electrochem., 2005, 35(1): 69-76.
doi: 10.1007/s10800-004-2398-1 URL

[25] Liu Y, Li S Y, Zhang J J, Liu J A, Han Z W, Ren L Q. Corrosion inhibition of biomimetic super-hydrophobic electrodeposition coatings on copper substrate[J]. Corrosion Sci., 2015, 94: 190-196.
doi: 10.1016/j.corsci.2015.02.009 URL

[26] Hernandez-Viezcas J A, Castillo-Michel H, Andrews J C, Cotte M, Rico C, Peralta-Videa J R, Ge Y, Priester J H, Holden P A, Gardea-Torresdey J L. In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max)[J]. ACS Nano, 2013, 7(2): 1415-1423.
doi: 10.1021/nn305196q pmid: 23320560

[27] Mishra R, Balasubramaniam R. Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel[J]. Corrosion Sci., 2004, 46(12): 3019-3029.
doi: 10.1016/j.corsci.2004.04.007 URL

[28] Pang N, Chen L. Effect of substrate orientation on critical thickness of Cu thin films[J]. Electron. Mater. Lett., 2011, 7(4): 359-363.
doi: 10.1007/s13391-011-0170-3 URL

[29] Lu L, Chen X, Huang X, Lu K. Revealing the maximum strength in nanotwinned copper[J]. Science., 2009, 323(5914): 607-610.
doi: 10.1126/science.1167641 pmid: 19179523



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.