Corresponding Author

Ren-Zhi Liu(taso@vip.sina.com);
Chong Wang(wangchong@uestc.edu.cn)


The manufacturing of electrolytic copper foil has attracted more and more attention with the extensive applications of printed circuit board and lithium battery. The industrial scale is still extending. Compared with the developments of electroplating equipment and electroplating process, there is limited research on the mechanism of electrodeposition. This paper summarizes the manufacturing process of electrodeposited copper foil and analyzes the differences of various electroplating parameters in different electrodeposited copper technologies, and points out the important role of electrodeposition current density in the formation of copper foil. By showing and comparing the microstructures of different electrodeposited copper foils, the influences of various factors in electrodeposition on the microstructures of copper foils and the corresponding macroscopic mechanical properties are discussed. From previous research results, it is found that the electrodeposition conditions and the composition of the plating solution have a significant impact on the microstructure and morphology of the copper foil, as well as the macroscopic mechanical properties. It is difficult to establish an effective relationship between the microstructures such as crystallite size and plane and the mechanical properties, which brings great challenge to the theoretical framework of the macro-mechanical properties of copper foils by using the microstructure of the coating as a bridge to establish electrodeposition conditions. Much effort has been tried to solve this problem by studying the mechanism of copper foil electrodeposition. The classical metal electrodeposition theory reveals that increasing the overpotential can increase the number of instantaneous nucleation and reduce the average grain size, however, it cannot explain the preferred orientation in crystallization. Watanabe found the similarity between electrodeposition and metallurgy, and believed that the microstructure of electrodeposited metal is related to the melting point of the metal, but this “microstructure control” theory still has some defects, such as the inability to explain the refining effect of additives on grains, etc. The author suggests that the relationship between the electrodeposition mechanism and the macroscopic properties of copper foil can be reshaped from the perspectives of valence bond and energy band theory. Influence of the macroscopic properties of copper foil can then be discussed.

Graphical Abstract


over-potential, current density, electronic copper foil, microstructure, physical property

Publication Date


Online Available Date


Revised Date


Received Date



[1] Liu R Z(刘仁志). Quantum electrochemistry and electroplating technology[M]. Beijing: China Building Materials Industry Press(中国建材工业出版社), 2021: 4-6.

[2] Electrochemical Society. Electrochemical fact sheet[M]. Tokyo: Maruzen Corporation, 1964: 1-10.

[3] Zhang Y Q(张永清), Ji Y S(吉毅松), Sun L H(孙丽红). An introduction to the development of electrodeposited green foil machines and copper foils at home and abroad[J]. J. Hebei Inst. Archit. Civ. Eng.(河北建筑工程学院学报), 2013, 31(04): 80-82.

[4] Kondo K, Akolkar R N, Barkey D P, Yokoi M. Copper electrodeposition for nanofabrication of electronics devices[M]. Springer Science, New York, 2014: 85-88

[5] Zhu R L(朱若林), Song y(宋言), Dai Z Y(代泽宇), Lin Y(林毅), Huang Y F(黄永发). Effects of gelatin and bis-(sodium sulfopropyl)-disulfide on properties of thick electrolytic copper foil[J]. Electroplating & Finishing(电镀与涂饰), 2021, 40(13): 1027-1030.

[6] Du R B(杜荣斌), Liu L J(刘励昀), Wu X(吴夏), Liu T(刘涛), Chen Y(陈杨), Lu B H(陆冰沪). Effects of additives N, N-diethylthiourea, PEG, Cl- - on electrocrystallization behavior of high tensile electrolytic copper foil[J]. Mater. Protec.(材料保护), 2021, 54(4): 7-14.

[7] Lu B H(陆冰沪), Shi H J(师慧娟), Li D S(李大双), Wu B(吴斌), Liu Y(刘耀), Fan X W(樊小伟), Tang Y Z(唐云志). Review on the effect of chloride ion on production of electrolytic copper foil[J]. Electroplating & Finishing(电镀与涂饰), 2019, 38(24): 1324-1328.

[8] Zhou S M(周绍民). Metal electrodeposition: principles and research methods[M]. Shanghai Science and Technology Press(上海科学技术出版社), 1987: 284-305.

[9] Fang J L(方景礼). Theory & application of coordination compounds in electroplating[M]. Chemical Industry Press(化学工业出版社), 2007: 219-224.

[10] Frumkin A H. Electrode process kinetics[M]. Beijing: Science Press, 1965: 239-249.

[11] Huang J L(黄家龙). Studies of additives of electrolyzing copper foil and fast electrocrystallization of copper in the additives presence[D]. Guangdong: South China University of Technology, 2013.

[12] Wang Q F(王庆福), Li Y E(李应恩), Fan B F(樊斌锋). Study on additive for 6 μm electrolytic copper foil used in lithium battery[J]. Electroplat. Pollut. Control(电镀与环保), 2020, 40(3): 23-26.

[13] Deng K(邓可). Production technology and market analysis of electrolytic copper foil for lithium-ion batteries[J]. Nonferrous Met. Process.(有色金属加工), 2021, 50(6): 8-9+25.

[14] Leng D G(冷大光). The operation status and development trend of China electronic copper foil industry in 2020[J]. Printed Circuit Board Info.(印制电路资讯), 2021, 5: 53-64.

[15] Shi H J(师慧娟), Lu B H(陆冰沪), Fan X W(樊小伟), Li D S(李大双), Zheng X W(郑小伟), Liu Y(刘耀), Tan Y H(谭育慧), Tang Y Z(唐云志). Research progress of electrodeposited copper foil surface treatment technology and additives[J]. Chin. J. of Nonferrous Met.(中国有色金属学报), 2021, 31(5): 1270-1284.

[16] Wang H Z(王海振), Hu X R(胡旭日). Effects of additives for acid copper plating on electrolytic copper foils being bright on both sides for fabrication of lithium-ion batteries[J]. Electroplating & Finishing(电镀与涂饰), 2019, 38(8): 335-337.

[17] He T S(何铁帅), Fan B F(樊斌锋), Peng X L(彭肖林), He J J(何佳佳). Study on the technology of extremely thin electrolytic copper foil with high safety performance used in lithium battery[J]. Shandong Industrial Technology(山东工业技术), 2020, 6: 124-127.

[18] Zhou W M(周文木), Hu Z H(胡智宏). Research on measuring methods for ED copper foil by the PCB enterprises[J]. Printed Circuit Info.(印制电路资讯), 2021, 29(12): 6-12.

[19] Jin R T(金荣涛). The production of electrolytic copper foil[M]. Central South University Press(中南大学出版社), 2010: 103-116.

[20] Chu R Z(储仁志). The ptoduction technology of electrolytic copper foil[J]. Mod. Chem. Ind.(现代化工), 1995, 15(8): 16-19.

[21] Dong Q(董强). Investigation on the technique of acid bright copper plating[D]. Hubei: Wuhan Research Institute of Materials Protection, 2007: 4-8.

[22] Yang S F(阳声富). Preparation of low-profile electrolytic copper foil for Li-ion battery and surface treatment process research[D]. Guangdong: South China University of Technology, 2015.

[23] Wen W(文雯), Zhou G Y(周国云), Wang C(王翀), He W(何为), Zhang R J(张仁军), Ai K H(艾克华), Li Q H(李清华), Ma C Y(马朝英), Guo Sh(郭珊). Research on surface roughening treatment of electrodeposited copper foil for 5G communication[J]. Printed Circuit Info.(印制电路资讯), 2021, 29(S2): 358-364.

[24] Hu X R(胡旭日), Wang H Z(王海振), Xu H Q(徐好强), Xu C(徐策), Wang W H(王维河). Multistep roughening of electrolytic copper foil in additive-free bath[J]. Electro-plating & Finishing(电镀与涂饰), 2015, 34(1): 20-24.

[25] Zhu R L(朱若林), Dai Z Y(代泽宇), Song Y(宋言), Huang Y F(黄永发), Liu C S(刘常升). Effect of bis-(sodium sulfopropyl)-disulfide on properties of high tensile strength copper foil for Li-ion battery[J]. Electroplating & Finishing(电镀与涂饰), 2021, 40(16): 1250-1253.

[26] Cai F M(蔡芬敏). The influence of electro-deposition parameters on microstructure and mechanical properties of electrolytic copper foils[D]. Nanchang: Nanchang University, 2011: 22-27.

[27] Liu L J(刘励昀). Study on the action mechanism of high efficient additives for acidic copper plating[D]. Anhui: Anqing Normal University, 2021.

[28] Smirnov B N, Kozhanov V N, Chuprakov V N. Specific features of crystal structure and surface topography of copper electrolytic foils for printed-circuit boards[J] Russ. J. Appl. Chem., 2001, 74(11): 1821-1828.
doi: 10.1023/A:1014868005885 URL

[29] Kurihara H, Kondo K, Okamoto Y. Effect of titanium cathode surface condition on initial copper deposition during electrolytic fabrication of copper foil[J]. J. Chem. Eng. Jpn., 2010, 43(7): 612-617.
doi: 10.1252/jcej.43.612 URL

[30] Yi G B(易光斌), Yang X J(杨湘杰), Peng W Y(彭文屹), Huang Y F(黄永发), Wang P(王平), Li Z Y(黎志勇). Influence of copper ion concentration on microstructure and performance of electrolytic copper foil[J]. Electroplating & Finishing(电镀与涂饰), 2015, 34(7): 371-374.

[31] Li J(李俊). Studies of additives and electrolytic technology of electrolyzing copper foil[D]. Guangdong: South China University of Technology, 2011.

[32] Liu L, Bu Y, Sun Y, Pan J, Fang Y, Liu J, Ma J. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils[J]. J. Mat. Sci. and Tech., 2021, 74: 237-245.

[33] Cheng X(程曦). Study on the effects of electrolytic process on microstructure and properties of electrolytic copper foils[D]. Beijing: General Research Institute for Nonferrous Metals, 2019.

[34] Han G Q(韩国强), Qin L J(秦丽娟), Sun N L(孙宁磊), Liu G(刘国), Wang K T(王魁珽). Preparation, micro-structure and performance of double shiny ultra-thin electrolytic copper foil[J]. China Nonferrous Metall.(中国有色冶金), 2021, 50(4): 13-18.

[35] Ma X L(马秀玲), Li Y Z(李永贞), Yao E D(姚恩东), Wang W J(王武军), Xie X S(解祥生), Qi S L(祁善龙), Cheng X(程曦), Li Y F(李艳锋), Huang G J(黄国杰), Yin X Q(尹向前). Microstructure and properties of electrolytic copper foils with different thicknesses[J]. Rare Metal Mat. Eng.(稀有金属材料与工程), 2019, 48(9): 2905-2909.

[36] Patrick S. A guide to designing copper-foil inductors[J]. J. Power. Electron., 2007, 33(7): 78-85.

[37] Tang Z Y(唐致远), He Y B(贺艳兵), Liu Y G(刘元刚), Liu Q(刘强), Yang X X(阳晓霞). Effects of copper foil as cathode current collector on performance of li-ion batteries[J]. Corros. Sci. Prot. Technol.(腐蚀科学与防护技术), 19(4): 265-268.

[38] Kondo K, Murakami H. Crystal growth of electrolytic Cu foil[J]. J. Electrochem. Soc., 2004, 151(7): C514-C518.
doi: 10.1149/1.1756883 URL

[39] Shi W J(师慧娟). Detection of additives in electrolytic copper foil plating bath and research on anti-corrosion performance[D]. Jiangxi: Jiangxi University of Science and Technology, 2021.

[40] Song Y(宋言), Zhu R L(朱若林), Lin Y(林毅), Dai Z Y(代泽宇). Application of N-allylthiourea in the preparation of electrolytic copper foil[J]. Electroplat. Finish.(电镀与涂饰), 2022, 41(3): 197-202.

[41] Zhu R L(朱若林), Dai Z Y(代泽宇), Song Y(宋言), Lin y(林毅). Effects of sulfur-containing organic additives on the microstructure and properties of electrolytic copper foils[J]. Copper Eng.(铜业工程), 2021, 5: 1-4.

[42] Fang Y C(方亚超), Pang M X(潘明熙), Huang H(黄惠), Shao Y L(邵延林), He Y P(何亚鹏), Chen B M(陈步明), Guo Z C(郭忠诚). Current situation and prospect of additives in copper electrolysis deposition process[J]. Min. Metal(矿冶), 2021, 30(5): 61-69.

[43] Wang C(王翀). Priciple and application of copper electro deposition[M]// He W(何为), Wang S X (王守绪). Advanced technology of printed circuit and printed electronics (volume 2)(印制电路与印制电子先进技术(下册)). Bejing: Science Press, 2016: 25-61.

[44] Hasegawa M, Nonaka Y, Negishi Y, Okinaka Y, Osaka T. Enhancement of the ductility of electrodeposited copper films by room-temperature recrystallization[J]. J. Electrochem. Soc., 2006, 153(2): C117-C120.
doi: 10.1149/1.2149299 URL

[45] Alshwawreh N, Militzer M, Bizzotto D, Kuo J C. Resistivity-microstructure correlation of self-annealed electro-deposited copper thin films[J]. Microelectron. Eng., 2012, 95: 26-33.
doi: 10.1016/j.mee.2012.02.035 URL

[46] Wang S P, Wei K X, Wei W, Du Q B, Alexandrov I V. Enhancing surface roughness and tensile strength of electrodeposited copper foils by composite additives[J]. Phys. Status Solidi A, 2022, 219(5): 2100735.
doi: 10.1002/pssa.202100735 URL

[47] Fan X W(樊小伟). Study on microstructure and mechanical properties of ultra-thin electrolytic copper foil and surface treatment technology[D]. Jiangxi: Jiangxi University of Science and Technology, 2021.

[48] Huang J D(黄金豆). Study of Cl--DPS-NP-n and Cl--B-AEO-n additive series for high performance copper foil[D]. Guangdong: South China University of Technology, 2016.

[49] Zhang J L, Chen H B, Fan B F, Shan H P, Chen Q, Jiang C H, Hou G Y, Tang Y P. Study on the relationship between crystal plane orientation and strength of electrolytic copper foil[J]. J. Alloys Compd., 2021, 884: 161044.
doi: 10.1016/j.jallcom.2021.161044 URL

[50] Yu W Y, Lin C Y, Li Q Y, Zhang J Q, Yang P X, An M Z. A novel strategy to electrodeposit high-quality copper foils using composite additive and pulse superimposed on direct current[J]. J. Appl. Electrochem., 2021, 51(3): 1-13.
doi: 10.1007/s10800-020-01525-x URL

[51] Wen W(文雯). Preparation and application research of ultra-thin carrier-attached copper foil[D]. Sichuan: University of Electronic Science and Technology of China, 2022.

[52] Zhu K(朱凯). Investigation and application of metal deposition for the electrical interconnection structure of electronic components[D]. Sichuan: University of Electronic Science and Technology of China, 2020: 57-59.

[53] Li S J(李溯杰). Electrodeposition preparation, properties and characterization of nanotwinned copper foil for lithium batteries[D]. Jiangsu: Jiangsu University of Science and Technology, 2019.

[54] Su Y D(苏亚东). Electrochemical tuning of copper grain growth and its application for electronic interconnection[D]. Sichuan: University of Electronic Science and Technology of China, 2020.

[55] Lai Z Q(赖志强). Research and application of high speed copper electroplating for the interconnection micro-holes of printed circuit board[D]. Sichuan: University of Electronic Science and Technology of China, 2020: 111-114.

[56] Kim M J, Park H S. Microstructure analysis of 8 μm electrolytic Cu foil in plane view using EBSD and TEM[J]. Appl. Micro., 2022, 52(1): 2.

[57] Li S J(李溯杰). Electrodeposition preparation, properties and characterization of nanotwinned copper foil for lithium batteries[D]. Jiangsu: Jiangsu University of Science and Technology, 2019.

[58] Dai M W(代明伟), Hu H(胡浩), Song K X(宋克兴), Cheng H Y(程浩艳), Lu W W(卢伟伟), Zhang Y M(张彦敏), Xu J(徐静), Feng Q(冯庆), Yang X K(杨祥魁). Effects of chloride ion mass concentration and electric field strength on properties of electrolytic copper foil[J]. J. Henan. Univ. Sci. Tech.(Nat. Sci.)(河南科技大学学报(自然科学版)), 2022, 43(1): 1-6+12+117.

[59] Dong J W(董景伟), Niu J J(牛晶晶), Fan B F(樊斌锋), Ren W(任伟). Cause analysis on burr defect of electrolytic copper foil and countermeasures[J]. Electroplating & Finishing(电镀与涂饰), 2017, 36(20): 1104-1107.

[60] Yin X Q, Peng, L J, Kayani S, Cheng L, Wang J W, Xiao W, Wang L G, Huang G J. Mechanical properties and microstructure of rolled and electrodeposited thin copper foil[J]. Rare Met., 2016, 35(12): 909-914.
doi: 10.1007/s12598-016-0806-4 URL

[61] He T S(何铁帅), Fan B F(樊斌锋). Recrystallization on mechanical property of electrolytic copper foil used in lithium battery[J]. Copper Eng.(铜业工程), 2020, 1: 52-55.

[62] Li D(李荻). Principles of electrochemistry (3rd Edition)[M]. Beijing: Beihang University Press(北京航空航天大学出版社), 2008: 295-296.

[63] Vetter K J. Electrochemische Kinetik[M]. Springer Verlag Berlin, 1961: 698.

[65] Du B C(渡边辙). Microstructure control theory of plated film and data base of plated film microstructure[M]. Beijing: Chemical Industry Press(化学工业出版社), 2007: 7-10.

[66] Zhou G D(周公度), Duan L Y(段连运). Fundamentals of structural chemistry (3rd Edition)[M]. Beijing: Peking University Press(北京大学出版社), 2002: 304-306.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.