Abstract
Aiming at the electroplating filling problem of deep via TSV (through silicon via) interconnection, the multi-compatible integrated manufacturing technology team at the Shanghai Jiao Tong University has completed the numerical solution of the equations and realized the numerical simulation of TSV filling mode by applying the finite element method with arbitrary Lagrange Euler algorithm. The filling mechanisms of blind vias, the butterfly filling form for the through vias and the simultaneous filling mode of vias with different aspect ratios are analyzed by simulation, contributing to the parameter optimization and sample manufacturing. The effects of electroplating current density and heat treatment temperature on the mechanical properties of electroplating filled TSV-Cu were investigated by in-situ compression test and uniaxial film tensile test. With the increase of heat treatment temperature, the fracture strength and yield strength decreased significantly, and the Young's modulus changed slowly in a corrugated shape. The influence of the current density was more complexed. Based on the above research results, the thermal deformation mechanism of interconnection structure caused by thermal mismatch stress was studied through the self-built in-situ testing system, which gives change in the real-time deformation of TSV-Cu with temperature. The results showed that the thermal deformation process can be divided into the elastic deformation stage, the quasi plastic strengthening stage and the plastic deformation stage.
Graphical Abstract
Keywords
through silicon via, numerical simulation, Cu electrodeposition mechanism, arbitrary lagrange-eulerian, 2.5-dimension interposer
Publication Date
2022-07-28
Online Available Date
2022-04-16
Revised Date
2022-03-28
Received Date
2022-02-18
Recommended Citation
Yun-Na Sun, Yong-Jin Wu, Dong-Dong Xie, Han Cai, Yan Wang, Gui-Fu Ding.
Research Progress of Copper Electrodeposition Filling Mechanism in Silicon Vias[J]. Journal of Electrochemistry,
2022
,
28(7): 2213001.
DOI: 10.13208/j.electrochem.2213001
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss7/10
References
[1] Topper M, Baumgartner T, Klein M, Fritsch T, Reichl H. Low cost wafer-level 3-D integration without TSV: 2009 Electronic Components & Technology Conference, San Diego, May 26-29, 2009[C]. Piscataway: IEEE, 2009.
[2]
Katti G, Stucchi M, De Meyer K, Dehaene W. Electrical modeling and characterization of through silicon via for three-dimensional ICs[J]. IEEE Trans. Electron Devices, 2010, 57(1): 256-262.
doi: 10.1109/TED.2009.2034508
URL
[3]
Kondo K, Suzuki Y, Saito T, Okamoto N, Takauchi M. High speed through silicon via filling by copper electrodeposition[J]. Electrochem. Solid-State Lett., 2010, 13(5): D26-D28.
doi: 10.1149/1.3313451
URL
[4] Wang F, Liu X M, Liu J Z. Effect of stirring on the defect-free filling of deep through-silicon vias[J]. IEEE Access, 2020, 8: 108555-108560.
[5] Pak J S, Ryu C, Kim J. Electrical characterization of trough silicon via (TSV) depending on structural and material parameters based on 3D full wave simulation:2007 International Conference on Electronic Materials and Packaging, Daejeon, November 19-22 2007[C]. Piscataway: IEEE, 2007.
[6] Ho S, Yoon S W, Zhou Q, Pasad K, Lau J H. High RF performance TSV silicon carrier for high frequency application:2008 Electronic Components & Technology Conference, Lake Buena Vista, May 27-30, 2008[C]. Piscataway: IEEE, 2008.
[7]
Frank T, Moreau S, Chappaz C, Leduc P, Arnaud L, Thuaire A, Chery E, Lorut F, Anghel L, Poupon G. Reliability of TSV interconnects: Electromigration, thermal cycling and impact on above metal level dielectric[J]. Microelectron. Reliab., 2013, 53(1): 17-29.
doi: 10.1016/j.microrel.2012.06.021
URL
[8] Zhu Y, Bian Y, Xin S, Ma S, Jin Y F. Effect of additives on copper electroplating profile for TSV filling: Guilin,August 13-16, 2012[C]. Piscataway: IEEE, 2012.
[9]
Josell D, Moffat T P. Extreme bottom-up filling of through silicon vias and damascene trenches with gold in a sulfite electrolyte[J]. J. Electrochem. Soc., 2013, 160(12): D3035-D3039.
doi: 10.1149/2.007312jes
URL
[10]
Jin S, Wang G, Yoo B. Through-silicon-via (TSV) filling by electrodeposition of Cu with pulse current at ultra-short duty cycle[J]. J. Electrochem. Soc., 2013, 160(12): D3300-D3305.
doi: 10.1149/2.050312jes
URL
[11]
Ryu S K, Lu K H, Zhang X F, Im J H, Ho P S, Huang R. Impact of near-surface thermal stresses on interfacial re-liability of through-silicon vias for 3D interconnects[J]. IEEE Trans. Device Mater. Reliab., 2011, 11(1): 35-43.
doi: 10.1109/TDMR.2010.2068572
URL
[12] Kuo C, Tsai H. Thermal stress analysis and failure mechanisms for through silicon via array:13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, May 30-June 1, 2012[C]. Piscataway: IEEE, 2012.
[13]
Sun Y N, Sun S, Zhang Y Z, Luo J B, Wang Y, Ding G F, Jin Y F. Initial thermal stress and strain effects on thermal mechanical stability of through silicon via[J]. Microelectron. Eng., 2016, 165: 11-19.
doi: 10.1016/j.mee.2016.08.006
URL
[14]
Wang H Y, Cheng P, Wang S, Wang H, Gu T, Li J Y, Gu X, Ding G F. Effect of thermal treatment on the mechanical properties of Cu specimen fabricated using electrodeposition bath for through-silicon-via filling[J]. Microelectron. Eng., 2014, 114: 85-90.
doi: 10.1016/j.mee.2013.09.007
URL
[15]
Wang H Y, Cheng P, Wang H, Liu R, Sun L M, Rao Q L, Wang Z Y, Gu T, Ding G F. Effect of current density on microstructure and mechanical property of Cu micro-cy-linders electrodeposited in through silicon vias[J]. Mater. Charact., 2015, 109: 164-172.
doi: 10.1016/j.matchar.2015.09.029
URL
[16]
Zhang Y Z, Sun Y N, Wang Y, Cheng P, Ding G F. Further research on the silicon via filling mechanism using an arbitrary lagrange-eulerian (ALE) method[J]. J. Electrochem. Soc., 2016, 163(2): D24-D32.
doi: 10.1149/2.0241602jes
URL
[17]
Zhang Y Z, Sun Y N, Ding G F, Wang Y, Wang H, Cheng P. Numerical simulation and mechanism analysis of throu-gh-silicon via (TSV) filling using an arbitrary lagrange-eulerian (ALE) method[J]. J. Electrochem. Soc., 2015, 162(10): D540-D549.
doi: 10.1149/2.0671510jes
URL
[18]
Zhang Y Z, Ding G F, Cheng P, Wang H. Numerical simulation and experimental verification of additive distribution in through-silicon via during copper filling process[J]. J. Electrochem. Soc., 2015, 162(1): D62-D67.
doi: 10.1149/2.0911501jes
URL
[19] Zhang Y Z. Study on the filling mechanism and technology of through via[D]. Shanghai: Shanghai Jiao Tong University, 2016.
[20]
Wang Z Y, Wang H, Cheng P, Ding G F, Zhao X L. Simultaneous filling of through silicon vias (TSVS) with different aspect ratios using multi-step direct current density[J]. J. Micromech. Microeng., 2014, 24(8): 085013.
doi: 10.1088/0960-1317/24/8/085013
URL
[21]
Zhang Y Z, Wang H Y, Sun Y N, Wu K F, Wang H, Cheng P, Ding G F. Copper electroplating technique for efficient manufacturing of low-cost silicon interposers[J]. Microelectron. Eng., 2016, 150: 39-42.
doi: 10.1016/j.mee.2015.11.005
URL
[22]
Luo J B, Wang G L, Sun Y N, Zhao X L, Ding G F. Fabrication and characterization of a low-cost interposer with an intact insulation layer and ultra-low TSV leakage current[J]. J. Micromech. Microeng., 2018, 28(12): 125010.
doi: 10.1088/1361-6439/aae8da
URL
[23]
Wang M, Cheng P, Li J H, Wang Y, Wang H, Ding G F, Zhao X L. Fabrication and performances of a novel copper-ordered-reinforced polymer composite interposer[J]. J. Micromech. Microeng., 2014, 24(2): 025016.
doi: 10.1088/0960-1317/24/2/025016
URL
[24]
Liu Y M, Sun Y N, Wang Y, Ding G F, Sun B, Zhao X L. A complex reinforced polymer interposer with ordered Ni grid and SiC nano-whiskers polyimide composite based on micromachining technology[J]. Electron. Mater. Lett., 2017, 13(1): 29-36.
doi: 10.1007/s13391-017-6199-1
URL
[25]
Wang H Y, Cheng P, Wang S, Wang H, Gu T, Li J Y, Gu X, Ding G F. Effect of thermal treatment on the mechanical properties of Cu specimen fabricated using electrodeposition bath for through-silicon-via filling[J]. Microelectron. Eng., 2014, 114: 85-90.
doi: 10.1016/j.mee.2013.09.007
URL
[26]
Sun Y N, Wang B, Wang H Y, Wu K F, Yang S Y, Wang Y, Ding G F. In-situ measurement on TSV-Cu deformation with hotplate system based on sheet resistance[J]. Mater. Res. Express, 2017, 4(12): 125003.
doi: 10.1088/2053-1591/aa9824
URL
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons