•  
  •  
 

Corresponding Author

Yun-Na Sun(Cecilia_Sun@sjtu.cn);
Gui-Fu Ding(gfding@sjtu.edu.cn)

Abstract

Aiming at the electroplating filling problem of deep via TSV (through silicon via) interconnection, the multi-compatible integrated manufacturing technology team at the Shanghai Jiao Tong University has completed the numerical solution of the equations and realized the numerical simulation of TSV filling mode by applying the finite element method with arbitrary Lagrange Euler algorithm. The filling mechanisms of blind vias, the butterfly filling form for the through vias and the simultaneous filling mode of vias with different aspect ratios are analyzed by simulation, contributing to the parameter optimization and sample manufacturing. The effects of electroplating current density and heat treatment temperature on the mechanical properties of electroplating filled TSV-Cu were investigated by in-situ compression test and uniaxial film tensile test. With the increase of heat treatment temperature, the fracture strength and yield strength decreased significantly, and the Young's modulus changed slowly in a corrugated shape. The influence of the current density was more complexed. Based on the above research results, the thermal deformation mechanism of interconnection structure caused by thermal mismatch stress was studied through the self-built in-situ testing system, which gives change in the real-time deformation of TSV-Cu with temperature. The results showed that the thermal deformation process can be divided into the elastic deformation stage, the quasi plastic strengthening stage and the plastic deformation stage.

Graphical Abstract

Keywords

through silicon via, numerical simulation, Cu electrodeposition mechanism, arbitrary lagrange-eulerian, 2.5-dimension interposer

Publication Date

2022-07-28

Online Available Date

2022-04-16

Revised Date

2022-03-28

Received Date

2022-02-18

References

[1] Topper M, Baumgartner T, Klein M, Fritsch T, Reichl H. Low cost wafer-level 3-D integration without TSV: 2009 Electronic Components & Technology Conference, San Diego, May 26-29, 2009[C]. Piscataway: IEEE, 2009.

[2] Katti G, Stucchi M, De Meyer K, Dehaene W. Electrical modeling and characterization of through silicon via for three-dimensional ICs[J]. IEEE Trans. Electron Devices, 2010, 57(1): 256-262.
doi: 10.1109/TED.2009.2034508 URL

[3] Kondo K, Suzuki Y, Saito T, Okamoto N, Takauchi M. High speed through silicon via filling by copper electrodeposition[J]. Electrochem. Solid-State Lett., 2010, 13(5): D26-D28.
doi: 10.1149/1.3313451 URL

[4] Wang F, Liu X M, Liu J Z. Effect of stirring on the defect-free filling of deep through-silicon vias[J]. IEEE Access, 2020, 8: 108555-108560.

[5] Pak J S, Ryu C, Kim J. Electrical characterization of trough silicon via (TSV) depending on structural and material parameters based on 3D full wave simulation:2007 International Conference on Electronic Materials and Packaging, Daejeon, November 19-22 2007[C]. Piscataway: IEEE, 2007.

[6] Ho S, Yoon S W, Zhou Q, Pasad K, Lau J H. High RF performance TSV silicon carrier for high frequency application:2008 Electronic Components & Technology Conference, Lake Buena Vista, May 27-30, 2008[C]. Piscataway: IEEE, 2008.

[7] Frank T, Moreau S, Chappaz C, Leduc P, Arnaud L, Thuaire A, Chery E, Lorut F, Anghel L, Poupon G. Reliability of TSV interconnects: Electromigration, thermal cycling and impact on above metal level dielectric[J]. Microelectron. Reliab., 2013, 53(1): 17-29.
doi: 10.1016/j.microrel.2012.06.021 URL

[8] Zhu Y, Bian Y, Xin S, Ma S, Jin Y F. Effect of additives on copper electroplating profile for TSV filling: Guilin,August 13-16, 2012[C]. Piscataway: IEEE, 2012.

[9] Josell D, Moffat T P. Extreme bottom-up filling of through silicon vias and damascene trenches with gold in a sulfite electrolyte[J]. J. Electrochem. Soc., 2013, 160(12): D3035-D3039.
doi: 10.1149/2.007312jes URL

[10] Jin S, Wang G, Yoo B. Through-silicon-via (TSV) filling by electrodeposition of Cu with pulse current at ultra-short duty cycle[J]. J. Electrochem. Soc., 2013, 160(12): D3300-D3305.
doi: 10.1149/2.050312jes URL

[11] Ryu S K, Lu K H, Zhang X F, Im J H, Ho P S, Huang R. Impact of near-surface thermal stresses on interfacial re-liability of through-silicon vias for 3D interconnects[J]. IEEE Trans. Device Mater. Reliab., 2011, 11(1): 35-43.
doi: 10.1109/TDMR.2010.2068572 URL

[12] Kuo C, Tsai H. Thermal stress analysis and failure mechanisms for through silicon via array:13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, May 30-June 1, 2012[C]. Piscataway: IEEE, 2012.

[13] Sun Y N, Sun S, Zhang Y Z, Luo J B, Wang Y, Ding G F, Jin Y F. Initial thermal stress and strain effects on thermal mechanical stability of through silicon via[J]. Microelectron. Eng., 2016, 165: 11-19.
doi: 10.1016/j.mee.2016.08.006 URL

[14] Wang H Y, Cheng P, Wang S, Wang H, Gu T, Li J Y, Gu X, Ding G F. Effect of thermal treatment on the mechanical properties of Cu specimen fabricated using electrodeposition bath for through-silicon-via filling[J]. Microelectron. Eng., 2014, 114: 85-90.
doi: 10.1016/j.mee.2013.09.007 URL

[15] Wang H Y, Cheng P, Wang H, Liu R, Sun L M, Rao Q L, Wang Z Y, Gu T, Ding G F. Effect of current density on microstructure and mechanical property of Cu micro-cy-linders electrodeposited in through silicon vias[J]. Mater. Charact., 2015, 109: 164-172.
doi: 10.1016/j.matchar.2015.09.029 URL

[16] Zhang Y Z, Sun Y N, Wang Y, Cheng P, Ding G F. Further research on the silicon via filling mechanism using an arbitrary lagrange-eulerian (ALE) method[J]. J. Electrochem. Soc., 2016, 163(2): D24-D32.
doi: 10.1149/2.0241602jes URL

[17] Zhang Y Z, Sun Y N, Ding G F, Wang Y, Wang H, Cheng P. Numerical simulation and mechanism analysis of throu-gh-silicon via (TSV) filling using an arbitrary lagrange-eulerian (ALE) method[J]. J. Electrochem. Soc., 2015, 162(10): D540-D549.
doi: 10.1149/2.0671510jes URL

[18] Zhang Y Z, Ding G F, Cheng P, Wang H. Numerical simulation and experimental verification of additive distribution in through-silicon via during copper filling process[J]. J. Electrochem. Soc., 2015, 162(1): D62-D67.
doi: 10.1149/2.0911501jes URL

[19] Zhang Y Z. Study on the filling mechanism and technology of through via[D]. Shanghai: Shanghai Jiao Tong University, 2016.

[20] Wang Z Y, Wang H, Cheng P, Ding G F, Zhao X L. Simultaneous filling of through silicon vias (TSVS) with different aspect ratios using multi-step direct current density[J]. J. Micromech. Microeng., 2014, 24(8): 085013.
doi: 10.1088/0960-1317/24/8/085013 URL

[21] Zhang Y Z, Wang H Y, Sun Y N, Wu K F, Wang H, Cheng P, Ding G F. Copper electroplating technique for efficient manufacturing of low-cost silicon interposers[J]. Microelectron. Eng., 2016, 150: 39-42.
doi: 10.1016/j.mee.2015.11.005 URL

[22] Luo J B, Wang G L, Sun Y N, Zhao X L, Ding G F. Fabrication and characterization of a low-cost interposer with an intact insulation layer and ultra-low TSV leakage current[J]. J. Micromech. Microeng., 2018, 28(12): 125010.
doi: 10.1088/1361-6439/aae8da URL

[23] Wang M, Cheng P, Li J H, Wang Y, Wang H, Ding G F, Zhao X L. Fabrication and performances of a novel copper-ordered-reinforced polymer composite interposer[J]. J. Micromech. Microeng., 2014, 24(2): 025016.
doi: 10.1088/0960-1317/24/2/025016 URL

[24] Liu Y M, Sun Y N, Wang Y, Ding G F, Sun B, Zhao X L. A complex reinforced polymer interposer with ordered Ni grid and SiC nano-whiskers polyimide composite based on micromachining technology[J]. Electron. Mater. Lett., 2017, 13(1): 29-36.
doi: 10.1007/s13391-017-6199-1 URL

[25] Wang H Y, Cheng P, Wang S, Wang H, Gu T, Li J Y, Gu X, Ding G F. Effect of thermal treatment on the mechanical properties of Cu specimen fabricated using electrodeposition bath for through-silicon-via filling[J]. Microelectron. Eng., 2014, 114: 85-90.
doi: 10.1016/j.mee.2013.09.007 URL

[26] Sun Y N, Wang B, Wang H Y, Wu K F, Yang S Y, Wang Y, Ding G F. In-situ measurement on TSV-Cu deformation with hotplate system based on sheet resistance[J]. Mater. Res. Express, 2017, 4(12): 125003.
doi: 10.1088/2053-1591/aa9824 URL

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.