Abstract
Nano-array structure possesses promising prospect in power supply, optical device and electronic manufacturing. In this paper, a black nickel nano-cone array was prepared on a flexible substrate by galvanostatic deposition and the corresponding factors involved in the fabrication of nickel nano-cone array was explored. Experimental results showed that a large current density and low main salt concentration were not favored to the formation of cone nickel structure. It was also found that ammonium chloride, as the crystal modifier, was crucial to deposit the uniform nano-cone array. In addition, the growth mechanism of nickel nano-cone was further studied by molecular dynamics simulation. The excellent wettability and light absorption of nickel nano-cone array were investigated, which demonstrates potential applications of the nickel nano-cone array.
Graphical Abstract
Keywords
nickel nano-cone array, electrodeposition, molecular dynamics simulation, flexible
Publication Date
2022-07-28
Online Available Date
2022-07-28
Revised Date
2022-06-06
Received Date
2022-05-06
Recommended Citation
Xiu-Ren Ni, Ya-Ting Zhang, Chong Wang, Yan Hong, Yuan-Ming Chen, Yuan-Zhang Su, Wei He, Xian-Ming Chen, Ben-Xia Huang, Zhen-Lin Xu, Yi-Feng Li, Neng-Bin Li, Yong-Jie Du.
Mechanism and Application of Nickel Nano-Cone by Electrodeposition on a Flexible Substrate[J]. Journal of Electrochemistry,
2022
,
28(7): 2213008.
DOI: 10.13208/j.electrochem.2213008
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol28/iss7/3
References
[1]
Wang F, Zuo Z C, Li L, He F, Li Y L. Graphdiyne nanostructure for high-performance lithium-sulfur batteries[J]. Nano Energy, 2020, 68: 104307.
doi: 10.1016/j.nanoen.2019.104307
URL
[2]
Tong H, Ouyang S X, Bi Y P, Umezawa N, Oshikiri M, Ye J H. Nano-photocatalytic materials: Possibilities and challenges[J]. Adv. Mater., 2012, 24(2): 229-251.
doi: 10.1002/adma.201102752
URL
[3]
Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes[J]. Science, 1997, 277(5334): 1971-1975.
doi: 10.1126/science.277.5334.1971
URL
[4]
Su Z J, Yang C, Xie B H, Lin Z Y, Zhang Z X, Liu J P, Li B H, Kang F Y, Wong C P. Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitort[J]. Energy Environ. Sci., 2014, 7(8): 2652-2659.
doi: 10.1039/C4EE01195C
URL
[5]
Zhang S C, Du Z J, Lin R X, Jiang T, Liu G R, Wu X M, Weng D S. Nickel nanocone-array supported silicon anode for high-performance lithium-ion batteries[J]. Adv. Mater., 2010, 22(47): 5378-5382.
doi: 10.1002/adma.201003017
URL
[6]
Wang X H, Yang Z B, Sun X L, Li X W, Wang D S, Wang P, He D Y. NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries[J]. J. Mater. Chem., 2011, 21(27): 9988-9990.
doi: 10.1039/c1jm11490e
URL
[7]
Xia Y Y, Mo X, Ling H Q, Hang T, Li M. Facile fabrication of Au nanoparticles-decorated Ni nanocone arrays as effective surface-enhanced Raman scattering substrates[J]. J. Electrochem. Soc., 2016, 163(10): D575-D578.
doi: 10.1149/2.0021610jes
URL
[8]
Peng Z M, Yang H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property[J]. Nano Today, 2009, 4(2): 143-164.
doi: 10.1016/j.nantod.2008.10.010
URL
[9]
Lohse S E, Murphy C J. The quest for shape control: A history of gold nanorod synthesis[J]. Chem. Mat., 2013, 25(8): 1250-1261.
doi: 10.1021/cm303708p
URL
[10]
Zhou X S, Wan L J, Guo Y G. Synthesis of MoS2 nano-sheet-graphene nanosheet hybrid materials for stable lithium storage[J]. Chem. Commun., 2013, 49(18): 1838-1840.
doi: 10.1039/c3cc38780a
URL
[11]
Dow W P, Chen H H, Yen M Y, Chen W H, Hsu K H, Chuang P Y, Ishizuka H, Sakagawa N, Kimizuka R. Through-hole filling by copper electroplating[J]. J. Electrochem. Soc., 2008, 155(12): D750-D757.
doi: 10.1149/1.2988134
URL
[12]
Huang Q, Lyons T W, Sides W D. Electrodeposition of cobalt for interconnect application: Effect of dimethylglyoxime[J]. J. Electrochem. Soc., 2016, 163(13): D715-D721.
doi: 10.1149/2.1111613jes
URL
[13]
Moffat T P, Wheeler D, Josell D. Electrodeposition of copper in the SPS-PEG-Cl additive system-I. Kinetic measurements: Influence of SPS[J]. J. Electrochem. Soc., 2004, 151(4): C262-C271.
doi: 10.1149/1.1651530
URL
[14]
Zheng L, He W, Zhu K, Wang C, Wang S X, Hong Y, Chen Y M, Zhou G Y, Miao H, Zhou J Q. Investigation of poly(1-vinyl imidazole co 1, 4-butanediol diglycidyl ether) as a leveler for copper electroplating of through-hole[J]. Electrochim. Acta, 2018, 283: 560-567.
doi: 10.1016/j.electacta.2018.06.132
URL
[15]
Dow W P, Chiu Y D, Yen M Y. Microvia filling by Cu electroplating over a Au seed layer modified by a disulfide[J]. J. Electrochem. Soc., 2009, 156(4): D155-D167.
doi: 10.1149/1.3078407
URL
[16]
Dow W P, Lu C W, Lin J Y, Hsu F C. Highly selective Cu electrodeposition for filling through silicon holes[J]. Electrochem. Solid State Lett., 2011, 14(6): D63-D67.
doi: 10.1149/1.3562278
URL
[17]
Gu C, Tu J. One-step fabrication of nanostructured Ni film with Lotus effect from deep eutectic solvent[J]. Langmuir, 2011, 27(16): 10132-10140.
doi: 10.1021/la200778a
URL
[18] Walter E C, Zach M P, Favier F, Murray B, Inazu K, Hemminger J C, Penner R M. Electrodeposition of porta-ble metal nanowire arrays[M]. USA: Sple-Int. Soc. Optical Engineering, 2002.
[19]
Yin A J, Li J, Jian W, Bennett A J, Xu J M. Fabrication of highly ordered metallic nanowire arrays by electrodeposition[J]. Appl. Phys. Lett., 2001, 79(7): 1039-1041.
doi: 10.1063/1.1389765
URL
[20] Huang B H, Zhang X F, Cai J N, Liu W K, Lin S. A novel MnO2/rGO composite prepared by electrodeposition as a non-noble metal electrocatalyst for ORR[J]. J. Appl. Ele-ctrochem., 2019, 49(8): 767-777.
[21]
Wu F F, Ze H J, Chen S H, Gao X F. High-efficiency boiling heat transfer interfaces composed of electroplated copper nanocone cores and low-thermal-conductivity nickel nanocone coverings[J]. ACS Appl. Mater. Interfaces, 2020, 12(35): 39902-39909.
doi: 10.1021/acsami.0c10761
URL
[22]
Hang T, Hu A M, Ling H Q, Li M, Mao D L. Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition[J]. Appl. Surf. Sci., 2010, 256(8): 2400-2404.
doi: 10.1016/j.apsusc.2009.10.074
URL
[23]
Ebrahimi F, Bourne G R, Kelly M S, Matthews T E. Mechanical properties of nanocrystalline nickel produced by electrodeposition[J]. Nanostruct. Mater., 1999, 11(3): 343-350.
doi: 10.1016/S0965-9773(99)00050-1
URL
[24]
Elsherik A M, Erb U. Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition[J]. J. Mater. Sci., 1995, 30(22): 5743-5749.
doi: 10.1007/BF00356715
URL
[25]
Chen Z, Zhu C, Cai M L, Yi X Y, Li J H. Growth and morphology tuning of ordered nickel nanocones routed by one-step pulse electrodeposition[J]. Appl. Surf. Sci., 2020, 508: 145291.
doi: 10.1016/j.apsusc.2020.145291
URL
[26]
Lai Z Q, Wang S X, Wang C, Hong Y, Zhou G Y, Chen Y M, He W, Peng Y Q, Xiao D J. A comparison of typical additives for copper electroplating based on theoretical computation[J]. Comput. Mater. Sci., 2018, 147: 95-102.
doi: 10.1016/j.commatsci.2017.11.049
URL
[27]
Wang C, An M Z, Yang P X, Zhang J Q. Prediction of a new leveler (N-butyl-methyl piperidinium bromide) for through-hole electroplating using molecular dynamics simulations[J]. Electrochem. Commun., 2012, 18: 104-107.
doi: 10.1016/j.elecom.2012.02.028
URL
[28] Sun H, Ren P, Fried J R. The compass force field: Parameterization and validation for phosphazenes[J]. Comput. Theor. Polym. Sci., 1998, 8(3-4): 363-363.
[29]
Hackett J C. Chemical reactivity theory: A density functional view[J]. J. Am. Chem. Soc., 2010, 132(21): 7558-7558.
doi: 10.1021/ja1030744
URL
[30] Jiang Q, Tallury S S, Qiu Y P, Pasquinelli M A. Interfacial characteristics of a carbon nanotube-polyimide nano-composite by molecular dynamics simulation[J]. Nano-technol. Rev., 2020, 9(1): 136-145.
[31] Premkumar S, Jawahar A, Mathavan T, Dhas M K, Sathe V G, Benial A M F. Dft calculation and vibrational spectroscopic studies of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine[J]. Spectroc. Acta Pt. A-Molec. Bio-molec. Spectr., 2014, 129: 74-83.
[32]
Shen J, Li Y, He J H. On the Kubelka-Munk absorption coefficient[J]. Dyes Pigment., 2016, 127: 187-188.
doi: 10.1016/j.dyepig.2015.11.029
URL
[33]
Tang M X, Zhang S T, Qiang Y J, Chen S J, Luo L, Gao J Y, Feng L, Qin Z J. 4,6-Dimethyl-2-mercaptopyrimidine as a potential leveler for microvia filling with electroplating copper[J]. RSC Adv., 2017, 7(64): 40342-40353.
doi: 10.1039/C7RA06857C
URL
[34]
Oláh J, Van Alsenoy C, Sannigrahi A B. Condensed fukui functions derived from stockholder charges: Assess-ment of their performance as local reactivity descriptors[J]. J. Phys. Chem. A, 2002, 106(15): 3885-3890.
doi: 10.1021/jp014039h
URL
[35] Lai Z Q, Wang C, Huang Y Z, Chen Y M, Wang S X, Hong Y, Zhou G Y, He W, Su X H, Sun Y K, Tao Y G, Lu X Y. Temperature-dependent inhibition of PEG in acid copper plating: Theoretical analysis and experiment evidence[J]. Mater. Today Commun., 2020, 24: 100973.
[36]
Saraireh S A, Altarawneh M, Tarawneh M A. Nanosystem’s density functional theory study of the chlorine adsorption on the Fe(100) surface[J]. Nanotechnol. Rev., 2021, 10(1): 719-727.
doi: 10.1515/ntrev-2021-0051
URL
[37]
Tarasevich Y I. The surface energy of hydrophilic and hydrophobic adsorbents[J]. Colloid J., 2007, 69(2): 212-220.
doi: 10.1134/S1061933X0702010X
URL
[38]
Zhu J, Yu Z F, Burkhard G F, Hsu C M, Connor S T, Xu Y Q, Wang Q, McGehee M, Fan S H, Cui Y. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays[J]. Nano Lett., 2009, 9(1): 279-282.
doi: 10.1021/nl802886y
URL
[39]
Xu Q, Qian X, Qu Y Q, Hang T, Zhang P, Li M, Gao L. Electrodeposition of Cu2O nanostructure on 3D Cu micro-cone arrays as photocathode for photoelectrochemical water reduction[J]. J. Electrochem. Soc., 2016, 163(10): H976-H981.
doi: 10.1149/2.0741610jes
URL
[40]
Li M H, Keller P, Li B, Wang X G, Brunet M. Light-driven side-on nematic elastomer actuators[J]. Adv. Mater., 2003, 15(7-8): 569-572.
doi: 10.1002/adma.200304552
URL
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons