•  
  •  
 

Authors

Xiu-Ren Ni, 1. School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China;
Ya-Ting Zhang, 1. School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China;
Chong Wang, 1. School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China;
Yan Hong, 1. School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China;Follow
Yuan-Ming Chen, 1. School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China;
Yuan-Zhang Su, 1. School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China;
Wei He, 1. School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China;
Xian-Ming Chen, 2. Zhuhai ACCESS Semiconductor Co., Ltd, Zhuhai 519175, Guangdong, China;
Ben-Xia Huang, 2. Zhuhai ACCESS Semiconductor Co., Ltd, Zhuhai 519175, Guangdong, China;
Zhen-Lin Xu, 3. Xiamen Institute of Flexible Electronics Co., Ltd & Xiamen Hongxin Electron-Tech Co., Ltd, Xiamen 361101, Fujian, China;
Yi-Feng Li, 3. Xiamen Institute of Flexible Electronics Co., Ltd & Xiamen Hongxin Electron-Tech Co., Ltd, Xiamen 361101, Fujian, China;
Neng-Bin Li, 3. Xiamen Institute of Flexible Electronics Co., Ltd & Xiamen Hongxin Electron-Tech Co., Ltd, Xiamen 361101, Fujian, China;
Yong-Jie Du, 4. Zhuhai Dynamic Technology Optical Industry Co., Ltd,Zhuhai 519175, Guangdong, China;

Corresponding Author

Yan Hong(hongyan@uestc.edu.cn)

Abstract

Nano-array structure possesses promising prospect in power supply, optical device and electronic manufacturing. In this paper, a black nickel nano-cone array was prepared on a flexible substrate by galvanostatic deposition and the corresponding factors involved in the fabrication of nickel nano-cone array was explored. Experimental results showed that a large current density and low main salt concentration were not favored to the formation of cone nickel structure. It was also found that ammonium chloride, as the crystal modifier, was crucial to deposit the uniform nano-cone array. In addition, the growth mechanism of nickel nano-cone was further studied by molecular dynamics simulation. The excellent wettability and light absorption of nickel nano-cone array were investigated, which demonstrates potential applications of the nickel nano-cone array.

Graphical Abstract

Keywords

nickel nano-cone array, electrodeposition, molecular dynamics simulation, flexible

Publication Date

2022-07-28

Online Available Date

2022-07-28

Revised Date

2022-06-06

Received Date

2022-05-06

References

[1] Wang F, Zuo Z C, Li L, He F, Li Y L. Graphdiyne nanostructure for high-performance lithium-sulfur batteries[J]. Nano Energy, 2020, 68: 104307.
doi: 10.1016/j.nanoen.2019.104307 URL

[2] Tong H, Ouyang S X, Bi Y P, Umezawa N, Oshikiri M, Ye J H. Nano-photocatalytic materials: Possibilities and challenges[J]. Adv. Mater., 2012, 24(2): 229-251.
doi: 10.1002/adma.201102752 URL

[3] Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes[J]. Science, 1997, 277(5334): 1971-1975.
doi: 10.1126/science.277.5334.1971 URL

[4] Su Z J, Yang C, Xie B H, Lin Z Y, Zhang Z X, Liu J P, Li B H, Kang F Y, Wong C P. Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitort[J]. Energy Environ. Sci., 2014, 7(8): 2652-2659.
doi: 10.1039/C4EE01195C URL

[5] Zhang S C, Du Z J, Lin R X, Jiang T, Liu G R, Wu X M, Weng D S. Nickel nanocone-array supported silicon anode for high-performance lithium-ion batteries[J]. Adv. Mater., 2010, 22(47): 5378-5382.
doi: 10.1002/adma.201003017 URL

[6] Wang X H, Yang Z B, Sun X L, Li X W, Wang D S, Wang P, He D Y. NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries[J]. J. Mater. Chem., 2011, 21(27): 9988-9990.
doi: 10.1039/c1jm11490e URL

[7] Xia Y Y, Mo X, Ling H Q, Hang T, Li M. Facile fabrication of Au nanoparticles-decorated Ni nanocone arrays as effective surface-enhanced Raman scattering substrates[J]. J. Electrochem. Soc., 2016, 163(10): D575-D578.
doi: 10.1149/2.0021610jes URL

[8] Peng Z M, Yang H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property[J]. Nano Today, 2009, 4(2): 143-164.
doi: 10.1016/j.nantod.2008.10.010 URL

[9] Lohse S E, Murphy C J. The quest for shape control: A history of gold nanorod synthesis[J]. Chem. Mat., 2013, 25(8): 1250-1261.
doi: 10.1021/cm303708p URL

[10] Zhou X S, Wan L J, Guo Y G. Synthesis of MoS2 nano-sheet-graphene nanosheet hybrid materials for stable lithium storage[J]. Chem. Commun., 2013, 49(18): 1838-1840.
doi: 10.1039/c3cc38780a URL

[11] Dow W P, Chen H H, Yen M Y, Chen W H, Hsu K H, Chuang P Y, Ishizuka H, Sakagawa N, Kimizuka R. Through-hole filling by copper electroplating[J]. J. Electrochem. Soc., 2008, 155(12): D750-D757.
doi: 10.1149/1.2988134 URL

[12] Huang Q, Lyons T W, Sides W D. Electrodeposition of cobalt for interconnect application: Effect of dimethylglyoxime[J]. J. Electrochem. Soc., 2016, 163(13): D715-D721.
doi: 10.1149/2.1111613jes URL

[13] Moffat T P, Wheeler D, Josell D. Electrodeposition of copper in the SPS-PEG-Cl additive system-I. Kinetic measurements: Influence of SPS[J]. J. Electrochem. Soc., 2004, 151(4): C262-C271.
doi: 10.1149/1.1651530 URL

[14] Zheng L, He W, Zhu K, Wang C, Wang S X, Hong Y, Chen Y M, Zhou G Y, Miao H, Zhou J Q. Investigation of poly(1-vinyl imidazole co 1, 4-butanediol diglycidyl ether) as a leveler for copper electroplating of through-hole[J]. Electrochim. Acta, 2018, 283: 560-567.
doi: 10.1016/j.electacta.2018.06.132 URL

[15] Dow W P, Chiu Y D, Yen M Y. Microvia filling by Cu electroplating over a Au seed layer modified by a disulfide[J]. J. Electrochem. Soc., 2009, 156(4): D155-D167.
doi: 10.1149/1.3078407 URL

[16] Dow W P, Lu C W, Lin J Y, Hsu F C. Highly selective Cu electrodeposition for filling through silicon holes[J]. Electrochem. Solid State Lett., 2011, 14(6): D63-D67.
doi: 10.1149/1.3562278 URL

[17] Gu C, Tu J. One-step fabrication of nanostructured Ni film with Lotus effect from deep eutectic solvent[J]. Langmuir, 2011, 27(16): 10132-10140.
doi: 10.1021/la200778a URL

[18] Walter E C, Zach M P, Favier F, Murray B, Inazu K, Hemminger J C, Penner R M. Electrodeposition of porta-ble metal nanowire arrays[M]. USA: Sple-Int. Soc. Optical Engineering, 2002.

[19] Yin A J, Li J, Jian W, Bennett A J, Xu J M. Fabrication of highly ordered metallic nanowire arrays by electrodeposition[J]. Appl. Phys. Lett., 2001, 79(7): 1039-1041.
doi: 10.1063/1.1389765 URL

[20] Huang B H, Zhang X F, Cai J N, Liu W K, Lin S. A novel MnO2/rGO composite prepared by electrodeposition as a non-noble metal electrocatalyst for ORR[J]. J. Appl. Ele-ctrochem., 2019, 49(8): 767-777.

[21] Wu F F, Ze H J, Chen S H, Gao X F. High-efficiency boiling heat transfer interfaces composed of electroplated copper nanocone cores and low-thermal-conductivity nickel nanocone coverings[J]. ACS Appl. Mater. Interfaces, 2020, 12(35): 39902-39909.
doi: 10.1021/acsami.0c10761 URL

[22] Hang T, Hu A M, Ling H Q, Li M, Mao D L. Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition[J]. Appl. Surf. Sci., 2010, 256(8): 2400-2404.
doi: 10.1016/j.apsusc.2009.10.074 URL

[23] Ebrahimi F, Bourne G R, Kelly M S, Matthews T E. Mechanical properties of nanocrystalline nickel produced by electrodeposition[J]. Nanostruct. Mater., 1999, 11(3): 343-350.
doi: 10.1016/S0965-9773(99)00050-1 URL

[24] Elsherik A M, Erb U. Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition[J]. J. Mater. Sci., 1995, 30(22): 5743-5749.
doi: 10.1007/BF00356715 URL

[25] Chen Z, Zhu C, Cai M L, Yi X Y, Li J H. Growth and morphology tuning of ordered nickel nanocones routed by one-step pulse electrodeposition[J]. Appl. Surf. Sci., 2020, 508: 145291.
doi: 10.1016/j.apsusc.2020.145291 URL

[26] Lai Z Q, Wang S X, Wang C, Hong Y, Zhou G Y, Chen Y M, He W, Peng Y Q, Xiao D J. A comparison of typical additives for copper electroplating based on theoretical computation[J]. Comput. Mater. Sci., 2018, 147: 95-102.
doi: 10.1016/j.commatsci.2017.11.049 URL

[27] Wang C, An M Z, Yang P X, Zhang J Q. Prediction of a new leveler (N-butyl-methyl piperidinium bromide) for through-hole electroplating using molecular dynamics simulations[J]. Electrochem. Commun., 2012, 18: 104-107.
doi: 10.1016/j.elecom.2012.02.028 URL

[28] Sun H, Ren P, Fried J R. The compass force field: Parameterization and validation for phosphazenes[J]. Comput. Theor. Polym. Sci., 1998, 8(3-4): 363-363.

[29] Hackett J C. Chemical reactivity theory: A density functional view[J]. J. Am. Chem. Soc., 2010, 132(21): 7558-7558.
doi: 10.1021/ja1030744 URL

[30] Jiang Q, Tallury S S, Qiu Y P, Pasquinelli M A. Interfacial characteristics of a carbon nanotube-polyimide nano-composite by molecular dynamics simulation[J]. Nano-technol. Rev., 2020, 9(1): 136-145.

[31] Premkumar S, Jawahar A, Mathavan T, Dhas M K, Sathe V G, Benial A M F. Dft calculation and vibrational spectroscopic studies of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine[J]. Spectroc. Acta Pt. A-Molec. Bio-molec. Spectr., 2014, 129: 74-83.

[32] Shen J, Li Y, He J H. On the Kubelka-Munk absorption coefficient[J]. Dyes Pigment., 2016, 127: 187-188.
doi: 10.1016/j.dyepig.2015.11.029 URL

[33] Tang M X, Zhang S T, Qiang Y J, Chen S J, Luo L, Gao J Y, Feng L, Qin Z J. 4,6-Dimethyl-2-mercaptopyrimidine as a potential leveler for microvia filling with electroplating copper[J]. RSC Adv., 2017, 7(64): 40342-40353.
doi: 10.1039/C7RA06857C URL

[34] Oláh J, Van Alsenoy C, Sannigrahi A B. Condensed fukui functions derived from stockholder charges: Assess-ment of their performance as local reactivity descriptors[J]. J. Phys. Chem. A, 2002, 106(15): 3885-3890.
doi: 10.1021/jp014039h URL

[35] Lai Z Q, Wang C, Huang Y Z, Chen Y M, Wang S X, Hong Y, Zhou G Y, He W, Su X H, Sun Y K, Tao Y G, Lu X Y. Temperature-dependent inhibition of PEG in acid copper plating: Theoretical analysis and experiment evidence[J]. Mater. Today Commun., 2020, 24: 100973.

[36] Saraireh S A, Altarawneh M, Tarawneh M A. Nanosystem’s density functional theory study of the chlorine adsorption on the Fe(100) surface[J]. Nanotechnol. Rev., 2021, 10(1): 719-727.
doi: 10.1515/ntrev-2021-0051 URL

[37] Tarasevich Y I. The surface energy of hydrophilic and hydrophobic adsorbents[J]. Colloid J., 2007, 69(2): 212-220.
doi: 10.1134/S1061933X0702010X URL

[38] Zhu J, Yu Z F, Burkhard G F, Hsu C M, Connor S T, Xu Y Q, Wang Q, McGehee M, Fan S H, Cui Y. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays[J]. Nano Lett., 2009, 9(1): 279-282.
doi: 10.1021/nl802886y URL

[39] Xu Q, Qian X, Qu Y Q, Hang T, Zhang P, Li M, Gao L. Electrodeposition of Cu2O nanostructure on 3D Cu micro-cone arrays as photocathode for photoelectrochemical water reduction[J]. J. Electrochem. Soc., 2016, 163(10): H976-H981.
doi: 10.1149/2.0741610jes URL

[40] Li M H, Keller P, Li B, Wang X G, Brunet M. Light-driven side-on nematic elastomer actuators[J]. Adv. Mater., 2003, 15(7-8): 569-572.
doi: 10.1002/adma.200304552 URL

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.